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Abstract. Wildcards are a complex and subtle part of the Java type
system, present since version 5.0. Although there have been various for-
malisations and partial type soundness results concerning wildcards, to
the best of our knowledge, no system that includes all the key aspects
of Java wildcards has been proven type sound. This paper establishes
that Java wildcards are type sound. We describe a new formal model
based on explicit existential types whose pack and unpack operations
are handled implicitly, and prove it type sound. Moreover, we specify a
translation from a subset of Java to our formal model, and discuss how
several interesting aspects of the Java type system are handled.

1 Introduction

This paper establishes type soundness for Java wildcards, used in the Java
type system to reconcile parametric polymorphism (also known as generics)
and inclusion polymorphism [7] (subclassing). A parametric (or generic) type
in Java, e.g., class List<X> ..., can be instantiated to a parameterised type,
e.g., List<Integer>. Wildcards extend generics by allowing parameterised types
to have actual type arguments which denote unknown or partially known types,
such as List<?> where ? stands for an unknown actual type argument. With
traditional generics, different actual type arguments to the same parametric type
create unrelated parameterised types, but wildcards introduce variance, i.e., they
allow for subtype relationships among such types; for instance, List<Integer>
is a subtype of List<? extends Number>.

Wildcards have been part of the Java language since 2004, but type soundness
for Java with wildcards has been an open question until now. There are several
informal, semi-formal, and formal descriptions of Java wildcards [3,11,17,24] and
soundness proofs for partial systems [5,14]. However, a soundness proof for a type
system exhibiting all of the interesting features of Java wildcards has been elu-
sive. Showing type soundness for Java with wildcards is difficult for a number of
reasons: first, the Java wildcard syntax prioritises a concise notation for common
cases, but is not expressive enough to denote all the types which may arise during
type checking; second, modeling wildcards with traditional existential types is
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not straightforward; and third, the inference of type parameters during a process
known as wildcard capture requires careful treatment.

We show type soundness for Java with wildcards using a new formal model,
TameFJ, which extends FGJ [13], which is a formalisation of Java generics.
We use explicit existential types (such as ∃X.List<X>) to model Java wildcard
types, but packing and unpacking of existential types is handled implicitly, in
the rules for typing and subtyping. The implicit unpacking of existential types
is used to model wildcard capture in Java. The use of an implicit approach (also
found in Wild FJ [17]) contrasts with our recent previous work [5], where explicit
packing and unpacking expressions were used. This approach created problems
with expressiveness and, a soundness proof for Wild FJ is still missing, due in
part to the complexity of creating existential types ‘on the fly’. In this paper we
provide a soundness proof without compromising expressiveness. In addition, we
define a translation to TameFJ from a subset of the Java language that includes
wildcards.

The main contribution of this paper is the new formal model and the sound-
ness result, achieved via several technical innovations. Additionally, the transla-
tion supports the claim that TameFJ is a faithful model of Java with wildcards.

In Sect. 2 we outline the background for Java wildcards and their formalisa-
tion. In Sect. 3 we define and discuss TameFJ and its type soundness proof, and
in Sect. 4 we present the translation from Java to TameFJ. Finally, in Sect. 5
we cover related work, and in Sect. 6 we discuss future work and conclude.

2 Background

In this section we give some background for the key concepts of this paper. We
deliberately keep this section rather brief; more details may be found in [5]. In
the examples here and elsewhere in the paper we make use of a class hierarchy
of shapes: Shape is a subclass of Object, Polygon and Circle are subclasses of
Shape, and Square is a subclass of Polygon.

2.1 Generics, Wildcards and Existential Types

Generics [3,11] add parametric polymorphism to Java. Classes and interfaces
may be generic, i.e., they may have formal type parameters. Parameterised types
are then constructed by applying generic types to actual type parameters. For
example, a list class could be defined as class List<X>..., and we may then
construct lists of strings and shapes using List<String> and List<Shape>,
or more complex types like List<List<Y>>, where Y could be a type variable
defined in the context. Similarly, methods may have formal type parameters
and receive actual type arguments at invocation; e.g., the method walk has one
formal type parameter, X, while walkSquares has none:
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<X> List<X> walk(Tree<X> x) {...}

List<Square> walkSquares(Tree<Square> y) {
return this.<Square>walk(y);

}

Wildcards A wildcard type is a parameterised type where ? is used as an actual
type parameter, for example List<?>. Such a type can be thought of as a list
of some type, where the wildcard is hiding that type. Where multiple wildcards
are used, for example Pair<?, ?>, each wildcard hides a potentially different
type. Wildcards enjoy variant subtyping [14], so List<Shape> is a subtype of
List<?>. This is in contrast to generic types that are invariant with respect to
subtyping, so List<Circle> is not a subtype of List<Shape>. Wildcards may
be given upper or lower bounds using the extends and super keywords, re-
spectively. This restricts subtyping to be co- or contravariant. So List<Square>
is a subtype of List<? extends Polygon> and List<Shape> is a subtype of
List<? super Polygon>, but not vice versa.

Java wildcards have the property of wildcard capture, where a wildcard is
promoted to a fresh type variable. This occurs most visibly at method calls:
List<?> is not a subtype of List<X>, but the wildcard can be capture converted
to a fresh type variable which allows otherwise illegal method invocations. Con-
sider the following legal Java code (using the method walk declared above):

List<?> walkAny(Tree<?> y) { (example 1)

this.walk(y);
}

At the method invocation, the wildcard in the type of y is capture converted
to a fresh type variable, Z, and the method invocation can then be thought of
as this.<Z>walk(y). In Sect. 3.4 we show how this example is type checked in
TameFJ.

Wildcard capture may give rise to types during type checking that can not
be denoted using the Java syntax. This is a serious obstacle for a direct formali-
sation of Java wildcards using the Java syntax, because type soundness requires
typability of every step of the computation, and this may require the use of types
that cannot be denoted directly.

In the next example we show how the type system treats each wildcard as
hiding a potentially different type. The method invocation at 1 is type incorrect
because the method compare requires a Pair parameterised by a single type
variable twice. Pair<?, ?> can not be capture converted to this type because
the two wildcards may hide different types. The invocation of the make method
at 2 has a type which is expressible but not denotable. The type checker knows
that the wildcards hide the same type (even though this can not be denoted in
the surface syntax) and so capture conversion, and thus type checking, succeeds.
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<X>Pair<X, X> make(List<X> x) {} (example 2)

<X>Boolean compare(Pair<X, X> x) {}

void m()
{

Pair<?, ?> p;
List<?> b;

this.compare(p); //1, type incorrect
this.compare(this.make(b)); //2, OK

}
Again, we show how this example is type checked in Sect. 3.4. The example can
be easily understood (and type checked) by using existential types to denote the
types that are expressible but not denotable using Java syntax.

Existential types Existential types are a form of parametric polymorphism
whereby a type may be existentially quantified [6,7,10,20,21,22]. For example, a
function may be defined with type ∃T.T→ T, that is, the function has type T to
T for some type, T. Existential types are a basis for data hiding and abstraction
in type systems; an early practical use was in modelling abstract data types [20].
In our formalisation we use existential types in a Java like setting, and so are
concerned with types of the form ∃X.List<X>. Values of existential types are
opaque packages; usually they are created using a pack (or close) expression and
then have to be unpacked (or opened) using another expression before they can
be used; in our approach both packing and unpacking occur implicitly.

2.2 Formalising Wildcards

The correspondence between wildcards and existential types goes back to the
work on Variant Parametric Types [14]. It has been integral to all formal work
with wildcards since [24]. This correspondence is discussed in more depth in
Sect. 4.

Wildcards are a strict extension of Java generics, and far more interesting to
describe formally. A number of features contribute to this, but foremost among
them is wildcard capture. Wildcard capture is roughly equivalent to unpacking
an existential type [17,24], but an explicit unpack expression appears to be very
hard to use to safely model wildcard capture [5]. Wildcards may have lower
bounds, which also introduces problems. Indeed, they had to be omitted from
our previous work [5] in order to show type soundness. Lower bounds can cause
problems by transitivity of subtyping; a näıve formalism would consider a type
variable’s lower bound to be a subtype of its upper bound, even if there is no
such relationship in the class hierarchy. This issue is addressed in Sect. 3.3.
Furthermore, when an existential type is created (which occurs in subtyping in
Java and TameFJ) we must somehow keep track of the witness type—the type
hidden by the wildcard—in order to recover it when the type is unpacked. In [5]
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this is done in the syntax of close expressions. However, in a system without
explicit packing of existential types it has proven very difficult to track the
witness types. Therefore, we resort to following the Java compiler (and [17])
and infer the hidden type parameters during execution and type checking. This
reliance on a simple kind of type inference can cause problems for the proof of
subject reduction, as described in [17], and it is one of the contributions of this
paper to handle it safely.

Wild FJ [17] is the first, and previously only, formalism that includes all the
interesting features of Java wildcards. Our formal model is, in many ways, a
development of Wild FJ. The syntax of Wild FJ is a strict subset of Java with
wildcards, requiring explicit type arguments to polymorphic method calls as in
our approach. However, Java types are converted to existential types ‘on the
fly’, and this conversion of types makes the typing, subtyping, well-formedness,
and auxiliary rules more complicated in Wild FJ. As a rough metric there are 10
auxiliary functions with 23 cases, nine subtyping, and 10 well-formedness rules in
Wild FJ, compared with seven auxiliary functions with 15 cases, eight subtyping
(11, counting subclassing), and eight well-formedness rules in our system. Type
soundness has never been proven for Wild FJ.

3 Type Soundness for Java Wildcards

We show type soundness for Java by developing a core calculus, TameFJ, which
models all the significant elements of type checking found in Java with wildcards.
TameFJ is not a strict subset of the Java language. However, a Java program
written in a subset of Java (corresponding to the syntax of Wild FJ) can be
easily translated to a TameFJ program, as we discuss in Sect. 4. Part of that
translation is to perform Java’s inference of type parameters for method calls
(except where this involves wildcards). As is common [17], we regard this as a
separate pre-processing step and do not model this in TameFJ.

TameFJ is an extension of FGJ [13]. The major extension to FGJ is the
addition of existential types, used to model wildcard types. Typing, subtyping
and reduction rules must be extended to accommodate these new types, and to
handle wildcard capture.

We use existential types in the surface syntax and, in contrast to Wild FJ,
do not create them during type checking; this simplifies the formal system and
our proofs significantly. In particular, capture conversion is dealt with more
easily in our system because fresh type variables do not have to be supplied. We
also ‘pack’ existential types more declaratively, by using subtyping, rather than
explicitly constructing existential types. This means that we avoid obtaining the
awkward1 type ∃X.X, found both in [17] and our previous work2 [5].

1 There is no corresponding type in Java, so it is unclear how such a type should
behave.

2 Such a type is required in earlier work because the construction ∃∆.T appears in
the conclusion of type rules, where T is a previously derived type. Since T may
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e ::= x | e.f | e.<P>m(e) | new C<T>(e) expressions

Q ::= class C<X¢ T> ¢ N {T f; M} class declarations
M ::= <X¢ T> T m(T x) {return e;} method declarations

v ::= new C<T>(v) values

N ::= C<T> | Object<> class types
R ::= N | X non-existential types
T, U ::= ∃∆.N | ∃∅.X types
P ::= T | ? type parameters

∆ ::= X→[Bl Bu] type environments
Γ ::= x:T variable environments
B ::= T | ⊥ bounds

x variables
C classes
X, Y type variables

Fig. 1. Syntax of TameFJ.

TameFJ has none of the limitations of our previous approach [5]; we allow
lower bounds, have more flexible type environments, allow quantification of more
than one type variable in an existential type, and have more flexible subtyping.
Thus, together with the absence of open and close expressions, TameFJ is much
closer to the Java programming language.

3.1 Notation and Syntax

TameFJ is a calculus in the FJ [13] style. We use vector notation for sequences;
for example, x stands for a sequence of ‘x’s. We use ∅ to denote the empty
sequence. We use a comma to concatenate two sequences. We implicitly assume
that concatenation of two sequences of mappings only succeeds if their domains
are disjoint. We use ¢ as a shorthand for extends and ¤ for super. The function
fv() returns the free variables of a type or expression, and dom() returns the
domain of a mapping. We assume that all type variables, variables, and fields
are named uniquely.

The syntax for TameFJ is given in Fig. 1. The syntax for expressions and
class and method declarations is very similar to Java, except that we allow ? as a
type parameter in method invocations. In TameFJ (and as opposed to Java) all

be a type variable, one may construct ∃X.X; this can not happen in our calculus.
Under a standard interpretation of existential types, types of the form ∃X¢ T.X have
no observably different behaviour from T because Java subtyping already involves
subclass polymorphism. Rigorous justification of this fact is outside the scope of this
paper, but is part of planned future work.
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actual type parameters to a method invocation must be given. However, where a
type parameter is existentially quantified (corresponding to a wildcard in Java),
we may use ? to mark that the parameter should be inferred. Such types can
not be named explicitly because they can not be named outside of the scope of
their type. The marker ? is not a replacement for ? in Java; ? can not be used
as a parameter in TameFJ types, and ? can not be used as a type parameter to
method calls in Java. Note that we treat this as a regular variable.

The syntax of types is that of FGJ [13] extended with existential types.
Non-existential types consist of class types (e.g., C<D<>>) and type variables, X.
Types (T) are existential types, that is a non-existential type (R) quantified by
an environment (∆, i.e., a sequence of formal type variables and their bounds),
for example, ∃X → [∃∅.D<> ∃∅.Object<>].C<X>. Type variables may only be
quantified by the empty environment, e.g., ∃∅.X. In the text and examples, we
use the shorthands C for C<>, ∃X.C<X> for ∃X→[⊥ Object<>].C<X>, and R for
∃∅.R.

Existential types in TameFJ correspond to types parameterised by wildcards
in Java. Using T as an upper or lower bound on a formal type variable corre-
sponds to using extends T or super T, respectively, to bound a wildcard. This
correspondence is discussed further in Sect. 4. The bottom type, ⊥, is used only
as a lower bound and is used to model the situation in Java where a lower bound
is omitted.

Substitution in TameFJ is defined in the usual way with a slight modification.
For the sake of consistency formal type variables are quantified by the empty set
when used as a type in a program (∃∅.X). Therefore, we define substitution on
such types to replace the whole type, which is [T/X]∃∅.X = T.

A variable environment, Γ , maps variables to types. A type environment,
∆, maps type variables to their bounds. Where the distinction is clear from the
context, we use “environment” to refer to either sort of environment.

3.2 Subtyping

The subclassing relation between non-existential types (@@:), reflects the class
hierarchy. Subclassing of type variables is restricted to reflexivity because they
have no place in the subclass hierarchy. Subtyping (<:) extends subclassing by
adding subtyping between existential types and between type variables and their
bounds. Extended subclassing (@:) is an intermediate relation that expresses
the class hierarchy (with the addition of a bottom type) and the behaviour of
wildcards and type variables as type parameters; it is used mainly to simplify
the proofs of soundness. All three relations are defined in Fig. 2.

The rule XS-Env, adapted from Wild FJ [17], gives all the interesting vari-
ance properties for wildcard types. It gives a subtype relationship between two
existentially quantified class types, where the type parameters of the subtype
are ‘more precise’ than those of the supertype. The following relationships are
given by this rule, given the class hierarchy described in Sect. 2 and using the
shorthands described in Sect. 3.1:
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Subclasses: ` R @@: R

class C<X¢ Tu> ¢ N {...}
` C<T> @@: [T/X]N

(SC-Sub-Class)

` R @@: R

(SC-Reflex)

` R @@: R′′ ` R′′ @@: R′

` R @@: R′

(SC-Trans)

Extended subclasses: ∆ ` B @: B

class C<X¢ Tu> ¢ N {...}
∆ ` ∃∆′.C<T> @: ∃∆′.[T/X]N

(XS-Sub-Class)

∆ `⊥@: B

(XS-Bottom)

∆ ` B @: B

(XS-Reflex)

∆ ` B @: B′′

∆ ` B′′ @: B′

∆ ` B @: B′

(XS-Trans)

dom(∆′) ∩ fv(∃X→[Bl Bu].N) = ∅ fv(T) ⊆ dom(∆, ∆′)

∆, ∆′ ` [T/X]Bl <: T ∆, ∆′ ` T <: [T/X]Bu

∆ ` ∃∆′.[T/X]N @: ∃X→[Bl Bu].N

(XS-Env)

Subtypes: ∆ ` B <: B

∆ ` B @: B′

∆ ` B <: B′

(S-SC)

∆ ` B <: B′′ ∆ ` B′′ <: B′

∆ ` B <: B′

(S-Trans)

∆(X) = [Bl Bu]

∆ ` ∃∅.X <: Bu

∆ ` Bl <: ∃∅.X
(S-Bound)

Fig. 2. TameFJ subclasses, extended subclasses, and subtypes.

∅ ` Shape @: Shape
∅ ` List<Shape> @: ∃X.List<X>
∅ ` List<Shape> @: ∃X→[Circle Object].List<X>
∅ ` ∃X→[Circle Shape].List<X> @: ∃X→[Circle Object].List<X>
∅ ` ∃X.Pair<X, X> @: ∃Y,Z.Pair<Y, Z>

That type parameters are ‘more precise’ is expressed in terms of a substitu-
tion, [T/X], where X are some of the parameters of the supertype and T are the
corresponding parameters in the subtype. The subtype checks in the premises
of XS-Env ensure that T are ‘more precise’ than X; that is, that T are within
the bounds of X. The first premise ensures that free variables in the supertype
can not be captured in the subtype, thus forbidding erroneous subtypes such
as ∆ ` ∃X.C<X> @: C<X>. The second premise ensures that variables are not
introduced to the subtype which are not bound either in ∆ or ∆′. This is a
limited form of well-formedness constraint on the subtype, and is only used in
the details of the proof of soundness.

Most of the type rules and lemmas are expressed in terms of subtyping,
however, the standard object-oriented features of the language (such as field
and method lookup) are defined around subclassing. We therefore need lemmas
that link subtyping with subclassing. This is done in two stages: lemma 17 links
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subtyping to extended subclassing, and lemma 35 links extended subclassing to
subclassing.

Lemma 17 (uBound refines subtyping) If ∆ ` T <: T′ and ` ∆ ok
then ∆ ` uBound∆(T) @: uBound∆(T′).

This lemma states that if two types are subtypes then their upper bounds are
extended subclasses. The uBound function (defined in Fig. 7) returns a non-
variable type by recursively finding the upper bound of a type until a non-
variable type is reached. The interesting cases in the proof are from the S-Bound
rule; where T = ∃∅.X and T′ = Bu, then by the definition of uBound, we have
that uBound(∃∅.X) = uBound(Bu), and are done by reflexivity. The other S-
Bound sub-case is where T = Bl and T′ = ∃∅.X, here we use ∆ ` uBound(Bl) @:
uBound(Bu) from F-Env and uBound(∃∅.X) = uBound(Bu), again from the
definition of uBound. A corollary to this lemma is that any two non-variable
types, which are subtypes, are also subclasses.

Lemma 35 (Extended subclassing gives subclassing) If ∆ ` ∃∆′.R′ @:
∃X→[Bl Bu].R and ∆ ` ok then there exists T where ` R′ @@: [T/X]R
and ∆,∆′ ` T <: [T/X]Bu and ∆,∆′ ` [T/X]Bl <: T and fv(T) ⊆ dom(∆,∆′).

This lemma states that for any types in an extended subclass relationship, a
substitution can be found where there is a subclass relationship between the
subtype and the substituted supertype. The difference between subclassing and
extended subclassing is, essentially, the XS-Env rule. This rule finds an extended
subclass of an existential type by substituting away its existential type variables.
This substitution corresponds to the one in the conclusion of the lemma.

3.3 Well-formedness

Rules for judging well-formed types and type environments are given in Fig. 3.
The rules for well-formed type environments are the most interesting. There are
two motivating issues: we must not allow type variables which have upper and
lower bounds that are unrelated in the class hierarchy; and we must restrict
forward references.

The first issue can cause a problem where an environment could judge a
subtype relation that does not reflect the class hierarchy. For example, an envi-
ronment containing Z→[Fish Plant] could judge (by using rule S-Bound and
transitivity) that Fish is a subtype of Plant, which is presumably incorrect.
We therefore check that the bounds of a type variable are related by subtyping
under an environment without that type variable. We also require the stronger
subclass relationship to hold for the upper bounds of the type variable’s imme-
diate bounds. This ensures that subtype relationships judged by a well-formed
environment respect the class hierarchy. We need this property to prove lemma
17, described in Sect. 3.2.

Forward references are only allowed to occur as parameters of the bounding
type. In the well-formedness rule, this is addressed by allowing forward references
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Well-formed types: ∆ ` B ok, ∆ ` P ok, ∆ ` R ok

X ∈ ∆

∆ ` X ok

(F-Var)

∆ `⊥ ok

(F-Bottom)

∆ ` Object<> ok

(F-Object)

∆ ` ? ok

(F-Star)

class C<X¢ Tu> ¢ N {...}
∆ ` T ok ∆ ` T <: [T/X]Tu

∆ ` C<T> ok

(F-Class)

∆ ` ∆′ ok
∆, ∆′ ` R ok

∆ ` ∃∆′.R ok

(F-Exist)

Well-formed type environments: ∆ ` ∆ ok

∆ ` ∅ ok

(F-Env-Empty)

∆, X→[Bl Bu], ∆
′ ` Bl ok ∆, X→[Bl Bu], ∆

′ ` Bu ok
∆ ` uBound∆(Bl) @: uBound∆(Bu)

∆ ` Bl <: Bu ∆, X→[Bl Bu] ` ∆′ ok

∆ ` X→[Bl Bu], ∆
′ ok

(F-Env)

Fig. 3. TameFJ well-formed types and type environments.

Method typing: ∆ ` M ok in C

∆′ = Y→[⊥ Tu] ∆ ` ∆′ ok ∆, ∆′ ` T, T ok
class C<X...> ¢ N {...}

∆, ∆′; x:T, this:∃∅.C<X> ` e : T | ∅
override(m, N, <Y¢ Tu>T→ T)

∆ ` <Y¢ Tu>T m(T x) {return e} ok in C

(T-Method)

mType(m, N) = <X¢ U>T→ T

override(m, N, <X¢ U>T→ T)

(T-Override)

mType(m, N) undefined

override(m, N, <X¢ U>T→ T)

(T-OverrideUndef)

Class typing: ` Q ok

∆ = X→[⊥ Tu] ∅ ` ∆ ok ∆ ` N, T ok ∆ ` M ok in C

` class C<X¢ Tu> ¢ N {T f; M} ok

(T-Class)

Fig. 4. TameFJ class and method typing rules.

when checking that the bounds are well-formed types, but not when checking the
subtype and subclass relationships of the bounds. This reflects Java where (in a
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class or method declaration) <X¢ Y, Y¢ Object> is illegal, due to the forward
reference in the bound of X; however, <X¢ List<Y>, Y¢ Object> is legal.

3.4 Typing

Method and class type checking judgements are given in Fig. 4 and are mostly
straightforward. The only interesting detail is the correct construction of type
environments for checking well-formedness of types and type environments. The
override relation allows method overriding, but does not allow overloading.

Expression typing: ∆; Γ ` e : T |∆

∆; Γ ` x : Γ (x) | ∅
(T-Var)

∆ ` C<T> ok

fields(C) = f fType(f, C<T>) =U

∆; Γ ` e : U | ∅
∆; Γ ` new C<T>(e) : ∃∅.C<T> | ∅

(T-New)

∆; Γ ` e : ∃∆′.N | ∅
fType(f, N) = T

∆; Γ ` e.f : T |∆′

(T-Field)

∆; Γ ` e : U |∆′

∆, ∆′ ` U <: T
∆ ` ∆′ ok ∆ ` T ok

∆; Γ ` e : T | ∅
(T-Subs)

∆; Γ ` e : ∃∆′.N | ∅ mType(m, N) = <Y¢ B>U→ U

∆ ` P ok ∆; Γ ` e : ∃∆.R | ∅
match(sift(R, U, Y), P, Y, T)

∆, ∆′, ∆ ` T <: [T/Y]B ∆, ∆′, ∆ ` ∃∅.R <: [T/Y]U

∆; Γ ` e.<P>m(e) : [T/Y]U |∆′, ∆

(T-Invk)

Fig. 5. TameFJ expression typing rules.

The typing rules are given in Fig. 5. Auxiliary functions used in typing are
given in Figs. 6 and 7.

The type checking judgement has the form ∆; Γ ` e : T |∆′, and should be
read as

expression e has type T under the environments ∆ and Γ , guarded by
environment ∆′ .

∆′ contains variables that have been unpacked from an existential type during
type checking. These variables are used with ∆ to judge some premises of a rule.
Any free variables in T are bound in either ∆ or ∆′.
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T-Subs is an extended subsumption rule; when ∆′ is empty it allows an
expression to be typed with a supertype of the expression’s type in the usual way.
The T-Subs rule can also be used to ‘remove’ the guarding environment from
the judgement. Type checking of a TameFJ expression is complete when a type is
found using an empty guarding environment (non-empty guarding environments
may only occur at intermediate stages in the derivation tree). This ensures that
no bound type variables escape the scope in which they are unpacked. The scope
covers the conclusions, some premises, and the derivations of these premises in
the type rule in which the variables are unbound.

Auxiliary Functions: uBound∆(B) and match(R, U, P, Y, T) and sift(R, U, Y)

uBound∆(B) =

�
uBound∆(Bu), if B = ∃∅.X, where ∆(X) = [Bl Bu]

B, otherwise

∀j where Pj = ? : Yj ∈ fv(R′) ∀i where Pi 6= ? : Ti = Pi

` R @@: [T/Y,T′/X]R′

dom(∆) = X fv(T, T′) ∩ Y, X = ∅
match(R, ∃∆.R′, P, Y, T)

X ∈ Y

sift((R, R), (∃∅.X, U), Y) = sift(R, U, Y)

X 6∈ Y sift(R, U, Y) = (R′, U′)

sift((R, R), (∃∅.X, U), Y) = ((R, R′), (∃∅.X, U′))

sift(∅, ∅, Y) = (∅, ∅)
sift(R, U, Y) = (R′, U′)

sift((R, R), (∃∆.N, U), Y) = (R, R′, ∃∆.N, U′)

Fig. 6. Auxiliary functions for TameFJ.

Typing of variables and ‘new’ expressions is done in the usual way. The lookup
function fields returns a sequence of the field names in a class, and fType takes
a field and a class type and returns the field’s type.

The type checking of field access and method invocation expressions follow
similar patterns: sub-expressions are type checked and their types are unpacked,
then some work is done using these unpacked types, and a result type is found.
The rule T-Subs may then be used to find a final result type that does not
require a guarding environment.

In the following paragraphs we describe unpacking and packing, followed by
descriptions of type checking using T-Field and T-Invk, accompanied with
examples.
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Lookup Functions

fields(Object) = ∅

class C<X¢ Tu> ¢ D<...> {U f; M}
fields(D) = g

fields(C) = g, f

class C<X¢ Tu> ¢ N {U f; M} f 6∈ f

fType(f, C<T>) = fType(f, [T/X]N)

class C<X¢ Tu> ¢ N {U f; M}
fType(fi, C<T>) = [T/X]Ui

class C<X¢ Tu> ¢ N {U f; M} m 6∈ M

mBody(m, C<T>) = mBody(m, [T/X]N)

class C<X¢ Tu> ¢ N {U′ f; M}
<Y¢ T′u> U m(U x) {return e0;} ∈ M

mBody(m, C<T>) = (x; [T/X]e0)

class C<X¢ Tu> ¢ N {U f; M} m 6∈ M

mType(m, C<T>) = mType(m, [T/X]N)

class C<X¢ Tu> ¢ N {U′ f; M}
<Y¢ T′u> U m(U x) {return e0;} ∈ M

mType(m, C<T>) = [T/X](<Y¢ T′u>U→ U)

Fig. 7. Method and field lookup functions for TameFJ.

Unpacking an existential type (∃∆.R) entails separating the environment (∆)
from the quantified type (R). ∆ can be used to judge premises of a rule and must
be added to the guarding environment in the rule’s conclusion. R can be used
without quantification in the rule; bound type variables in R will now be free,
we must take care that these do not escape the scope of the type rule.

If the result of type checking an expression contains escaping type variables
(indicated by a non-empty guarding environment), then we must find a super-
type (using T-Subs) in which there are no free variables, and use this as the
expression’s type. In the case that an escaping type variable occurs as a type
parameter (e.g., X in C<X>), then the type may be packed to an existential type
(e.g., ∃X.C<X>) using the subtyping rule XS-Env. In the case that the type vari-
able is the whole type, i.e., ∃∅.X, then the upper bound of X can be used as the
result type by using S-Bound.

Field access In T-Field, the fType function applied to the unpacked type
(N) of the receiver gives the type of the field (T). Because T may contain type
variables bound in the environment ∆′, the judgement must be guarded by ∆′.

Example — Field access The following example of the derivation of a type
for a field access expression demonstrates the sequence of unpacking, finding the
field type, and finding a supertype that does not contain free variables. In the
example, the type labelled 1 is unpacked to 2. The type labelled 3 would escape
its scope, and so its supertype (4) must be used as the result of type checking.
We assume that the TreeNode<Y> class declaration has a field datum with type
Y and that Γ = x:∃X→[⊥ Shape].TreeNode<X>.
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∅; Γ ` x : ∃X→[⊥ Shape].TreeNode<X>1 | ∅
fType(datum, TreeNode<X>2) = X3

∅; Γ ` x.datum : X3 | X→[⊥ Shape]2

(T-Field)

∅, X→[⊥ Shape] ` X3 <: Shape4

∅ ` X→[⊥ Shape] ok
∅ ` Shape4 ok

∅; Γ ` x.datum : Shape4 | ∅
(T-Subs)

2

Method Invocation In T-Invk, function mType applied to the unpacked
type (N) of the receiver gives the method’s signature, <Y¢ B>U→U. We use the
unpacked types (R) of the actual parameters and the match function to infer
any ‘missing’ (actual) type parameters (denoted by ? in our syntax, following
Wild FJ). The (possibly inferred) actual type parameters are substituted for
formal ([T/Y]) in the method’s type signature. After substitution, the actual
type parameters (T) must be within the formal bounds (B), and the types of the
actual parameters must be subtypes of the types of the formal parameters (U).
These checks are performed under the type environment ∆,∆′, ∆. Similarly to
T-Field, we must guard the conclusion of the type rule with the environments
extracted by unpacking (∆′, ∆).

The substitution [T/Y] is determined using the types of actual (R) and formal
parameters (U). These types are filtered using the sift function before being
passed to match. This ensures that where the type of a formal parameter is one
of the formal type parameters (Ui ∈ Y), the formals and actuals at this position
are not used for inference. Hence, we only infer the value of a type variable based
on its usage as a type parameter in the formal type of a value argument.

Type parameter inference is done using the match relation (Fig. 6). All formal
type parameters (Y) are substituted by types T. These types are either given
explicitly, or are inferred if left unspecified (i.e., marked with ?). The first premise
of match ensures that any unspecified type parameter can be inferred, i.e., it
appears as a type parameter in a type of at least one of the method’s formal value
parameters. The second premise ensures that each specified type parameter is
used in the returned sequence. The remaining premises find a substitution that
allows subclassing between the formal and actual parameter types. Part of this
substitution will be the substitution of actual type parameters for formals, and
these actual type parameters are T. The remainder (T′) account for existentially
quantified type variables in the formal parameter types. These are forgotten,
since in T-Invk we use full subtyping which allows us to use the XS-Env rule
to fulfil the same role.

Examples — Method invocation Example 1 from Sect. 2.1 demonstrates
method invocation with a simple case of wildcard capture. The existential type
∃Z.Tree<Z> is unpacked to Tree<Z>, and Z is inferred and substituted for X.
The return type (List<Z>) is then packed to the existential type ∃Z.List<Z>.
We show how the example can be type checked using the T-Invk and T-Subs
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rules (the bounds of type variables are omitted for clarity); the type labelled
1 is unpacked to 2 and the type labelled 3 is packed to 4. We omit from the
derivation tree the call to sift for clarity, note that sift(Tree<Z>2, Tree<X>, X) =
(Tree<Z>2, Tree<X>)

∅; this:C ` this : C | ∅
mType(walk, C) = <X> Tree<X>→List<X>

∅; this:C ` y : ∃Z.Tree<Z>1 | ∅
match(Tree<Z>2, Tree<X>, ?, X, Z

2
)

Z2 ` Tree<Z>2 <: Tree<Z>

∅; this:C ` this.<?>walk(y) : List<Z>3 | Z2

(T-Invk)

Z2 ` List<Z>3 <: ∃Z.List<Z>4

∅ ` Z2 ok
∅ ` ∃Z.List<Z>4 ok

∅; this:C ` this.<?>walk(y) : ∃Z.List<Z>4 | ∅
(T-Subs)

2

Example 2 from Sect. 2.1 expresses types which can not be denoted using Java
syntax. Using the syntax of existential types, it becomes clear why type checking
fails at 1. Namely, for the expression at 1 to be type correct, a T would need to
be found so that match(Pair<U, V>, Pair<X, X>, ?, X, T). From the definition of
match we see that T would have to satisfy ` Pair<U, V> @@: [T/X]Pair<X, X>;
no such T exists, and hence matching, and thus type checking, fails.

<X>Pair<X, X> make(List<X> x) {}
<X>void compare(Pair<X, X> x) {}

void m()
{

∃U,V.Pair<U, V> p;
∃Z.List<Z> b;

this.<?>compare(p); //1, type incorrect
this.<?>compare(this.<?>make(b)); //2, OK

}

2

Type Inference As is usual with formal type systems, we consider type in-
ference to be performed in a separate phase before type checking. Due to the
presence of existential types, some inferred type parameters can not be named
and are marked with ?. These parameters must be inferred during type checking.
In T-Invk we only allow the inference of types where they are used as parame-
ters to an actual parameter type (e.g., X in <X>void m(Tree<X> x)...). This is
enforced by the sift function (defined in Fig. 6), which excludes pairs of actual
and formal parameter types where the formal parameter type is a formal type
variable of the method.
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Computation: e ; e

fields(C) = f

new C<T>(v).fi ; vi

(R-Field)

v = new N(v′) v = new N(v′′)
mBody(m, N) = (x; e0) mType(m, N) = <Y¢ B>U → U

match(sift(N, U, Y), P, Y, T)

v.<P>m(v) ; [v/x, v/this, T/Y]e0

(R-Invk)

Congruence: e ; e

e ; e′

e.f ; e′.f

(RC-Field)

e ; e′

e.<P>m(e) ; e′.<P>m(e)

(RC-Inv-Recv)

ei ; e′i
e.<P>m(..ei..) ; e.<P>m(..e′i..)

(RC-Inv-Arg)

ei ; e′i
new C<T>(..ei..) ; new C<T>(..e′i..)

(RC-New-Arg)

Fig. 8. TameFJ reduction rules.

3.5 Operational Semantics

The operational semantics of TameFJ are defined in Fig. 8. Most rules are simple
and similar to those in FGJ. The interesting rule is R-Invk, which requires
actual type parameters which do not include ?, these are found using the match
relation. Avoiding the substitution of ? for a formal type variable in the method
body prevents the creation of invalid expressions, such as new C<?>(). Since we
are dealing only with values when using this rule, there will be no existential
types and so all type parameters could be specified. However, there is no safe
way to substitute the appropriate types for ?s during execution because each ?
may mark a different type. In this rule, mBody (defined in Fig. 6) is used to
lookup the body (an expression) and the formal parameters of the method.

3.6 Type Soundness

We show type soundness for TameFJ by proving progress and subject reduction
theorems [27], stated below. We prove these with empty environments since,
at runtime, variables and type variables should not appear in expressions. A
non-empty guarding environment is required in the statement of the progress
theorem, because we use structural induction over the type rules; if this envi-
ronment were empty, the inductive hypothesis could not be applied in the case
of T-Subs.
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In the remainder of this section, we summarise some selected lemmas; we list
most other lemmas in the appendix. We give full proofs in the extended version
of this paper, available from:

http://www.doc.ic.ac.uk/˜ncameron/papers/cameron ecoop08 full.pdf

Theorem 1 (Progress) For any ∆, e, T, if ∅; ∅ ` e : T |∆ then either
e ; e′ or there exists a v such that e = v.

Theorem 2 (Subject Reduction) For any e, e′, T, if ∅; ∅ ` e : T | ∅
and e ; e′ then ∅; ∅ ` e′ : T | ∅.
To prove these two theorems, 40 supporting lemmas are required. These es-

tablish ‘foundational’ properties of the system, properties of substitution, prop-
erties of subtyping and subclassing (discussed in Sect. 3.2), which functions and
relations always give well-formed types, and properties specific to each case of
subject reduction and progress. Two of the most interesting lemmas concern the
match relation:

Lemma 36 (Subclassing preserves matching (receiver)) If ∆ `
∃∆1.N1 @: ∃∆2.N2 and mType(m, N2) = <Y2 →[B2l B2u]>U2→U2 and
mType(m, N1) = <Y1 →[B1l B1u]>U1→U1 and match(sift(R, U2, Y2), P, Y2, T)
and ∅ ` ∆ ok and ∆, ∆′ ` T ok then match(sift(R, U1, Y1), P, Y1, T).

Lemma 37 (Subclassing preserves matching (arguments)) If ∆ `
∃∆1.R1 @: ∃∆2.R2 and match(sift(R2, U, Y), P, Y, T) and fv(U) ∩ Z = ∅
and ∆2 = Z→[Bl Bu] and ∅ ` ∆ ok and ∆ ` ∃∆1.R1 ok and ∆ ` P ok

then there exists U′ where match(sift(R1, U, Y), P, Y, [U′/Z]T) and ∆, ∆1 `
U′ <: [U′/Z]Bu and ∆, ∆1 ` [U′/Z]Bl <: U′ and ` R1 @@: [U′/Z]R2 and
fv(U′) ⊆ ∆, ∆1.

Lemma 36 states that if match succeeds with the formal parameter types of a
superclass, then match will succeed where the formal parameter types are taken
from the (extended) subclass (and the other arguments remain unchanged). Since
overriding methods must have the same parameter types and formal type vari-
ables as the methods they override, the proof should be straightforward. How-
ever, it is complicated by extended subclassing of existential types; for example,
if a method m is declared to have a parameter with type Z in the class declaration
of class C<Z¢ Object>, then the type of m’s formal parameter will have type X
when looked up in ∃X.C<X> and A in C<A>. X may not be a subtype of A, even if
C<A> is an extended subclass of ∃X.C<X>. We show in the proof that such issues
do not affect T, because these types are found only from the actual parameter
types of the method call.

Lemma 37 performs a similar duty, but for the types of the actual parameters.
The conclusion defines a ‘valid’ substitution which is given by lemma 35 (see
Sect. 3.2). The types T in match are found from the actual parameter types and
so, in contrast to lemma 36, these types are affected by the substitution in the
conclusion of the lemma.
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Lemma 31 (Inversion Lemma (object creation))
If ∆; Γ ` new C<T>(e) : T |∆′ then ∆′ = ∅ and ∆ ` C<T> ok and
fields(C) = f and fType(f, C<T>) =U and ∆;Γ ` e : U | ∅ and ∆ `
∃∅.C<T> <: T.

Lemma 33 (Inversion Lemma (method invocation)) If ∆; Γ `
e.<P>m(e) : T |∆′ and ∅ ` ∆ ok and ∆ ` ∆′ ok and ∀x ∈ dom(Γ ) :
∆ ` Γ (x) ok then there exists ∆n where ∆′,∆n = ∆′′,∆ and ∆ `
∆′,∆n ok and ∆; Γ ` e : ∃∆′′.N | ∅ and mType(m, N) = <Y¢ B>U →
U and ∆; Γ ` e : ∃∆.R | ∅ and match(sift(R, U, Y), P, Y, T) and ∆ `
P ok and ∆,∆′′, ∆ ` T <: [T/Y]B and ∆,∆′′, ∆ ` ∃∅.R <: [T/Y]U and
∆,∆′′,∆n ` [T/Y]U <: T.

The formulation of the inversion lemmas is made more interesting by the
presence of the guarding environment (∆′) in the typing judgement (∆;Γ ` e :
T |∆′). In the case of object creation (lemma 31) we show that the guarding
environment must be empty. Intuitively, this is because no existential types may
be unpacked in the application of T-New, and T-Subs can only shrink the
guarding environment, but not add to it. This property of object creation is
used heavily in the proof of subject reduction since values in TameFJ are object
creation expressions.

Method invocation is more complex; the guarding environment of T-Invk
is formed from the environments unpacked from the types of the receiver and
arguments, but these may be re-packed by applying T-Subs. The conclusion
of lemma 33 is that there exists some environment, ∆n, which, when concate-
nated with ∆′ will be equal to the unpacked environments from the receiver and
arguments.

Alpha conversion and Barendregt’s variable convention As well as the
standard use of alpha conversion to rename bound variables in existential types,
we also need to be able to rename type variables in the guarding environment,
as in the following lemma:

Lemma 7 (Alpha renaming of guarding environments)
If ∆;Γ ` e : T | X→[Bl Bu] and Y are fresh, then
∆; Γ ` e : [Y/X]T | Y→[[Y/X]Bl [Y/X]Bu].

Lemma 7 guarantees that we can rename variables in ∆′ and T and preserve
typing. Thus, the guarding environment can be thought of as binding its type
variables; the scope of the binding is T, the result of type checking. Note that
we do not need to rename types in e. This is because any type variables in the
domain of the guarding environment (X) come from unpacked existential types,
and so can not be explicitly named in the expression syntax; instead they would
be marked with ?.

In order to reduce the number of places where we need to apply alpha con-
version in our proofs, we make use of Barendregt’s variable convention [2]; i.e.,
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we assume that bound and free variables are distinct. For example, consider the
proof of lemma 2:

Lemma 2 (Subsititution preserves matching) If match(R,∃∆.R′, P, Y, U)
and (X∪fv(T))∩Y) = ∅ then match([T/X]R, [T/X]∃∆.R′, [T/X]P, Y, [T/X]U).

We reach a point in the proofs where we have shown that
` [T/X]R @@: [T/X][U/Y,U′/Z]R′, dom(∆) = Z, and (X ∪ fv(T)) ∩ Y) = ∅; we

wish to show ` [T/X]R @@: [[T/X]U/Y,[T/X]U′/Z][T/X]R′ and for this we re-
quire that Z are not free in T. We would have used alpha conversion on ∃∆.R′ to
accomplish this; however, this would have required extensive renaming through-
out the proof. Instead we use the variable convention and assume that Z are
fresh at the point of becoming free and we can proceed with an elegant proof.

The use of Barendregt’s variable convention is not always safe [25]. A suffi-
cient condition is that all rules are equivariant and that any binders in a rule
do not appear free in that rule’s conclusion [25]. Since TameFJ satisfies these
conditions, using Barendregt’s convention is safe.

4 Translating Java to TameFJ

In this section we describe a possible translation from the Java subset which
accommodates wildcards into TameFJ.

As said in the introduction, we work in a setting where we expect the first
phase to have happened. Here we describe the second phase, and define it in Fig.
10. In Fig. 9 we give the syntax of the relevant subset of Java types, which are
also those of Wild FJ.

Ns ::= C<Ts> Java class types
Ts ::= C<Ps> | X Java types
Ps ::= Ts | ? | ? ¢ Ts | ? ¤ Ts Java type parameters

Fig. 9. Syntax of Java types.

The second phase is defined in terms of the functions T , P, and M, where
T translates Java types to TameFJ types; P translates a type parameter to
an environment and a TameFJ type; and M gives the minimal types out of
two. The function T maps each occurrence of a wildcard, ?, in a Java type
onto an existentially quantified type variable. To do this, it uses the function
P, which maps any Java type onto an environment and a TameFJ type. T uses
the collected environments to create an existential type, using the M function
to find the appropriate upper bounds, and replaces each type argument by its
image through P. Note that, in order to reduce the notational complexity, the
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translation of non-wildcard type parameters introduces a type variable which is
never used; this is harmless.

We now highlight some of the finer points of the translation in terms of
examples.

class C<X¢ Ts>... P∆(Ps) = (Y→ [Us U′s], T)

T∆(C<Ps>) = ∃Y→ [T∆(Us) M∆(T∆(U′s), [Y/X]T∆(Ts))] .C<T>

T∆(X) = ∃∅.X
∆ ` T <: T′

M∆(T, T′) = T = M∆(T′, T)
∆ ` T 6<: T′ ∆ ` T′ 6<: T

M∆(T′, T) = T

X is fresh

P∆(?) = (X→ [⊥ ∃∅.Object], X)
P∆(? ¢ Ts) = (X→ [⊥ T∆(Ts)], X)

P∆(? ¤ Ts) = (X→ [T∆(Ts) ∃∅.Object], X)
P∆(Ts) = (X→ [⊥ ∃∅.Object], T∆(Ts))

Fig. 10. Translation from Java types to TameFJ types.

A wildcard that occurs as a type parameter is replaced by a quantified
type variable. Bounds on the wildcard become bounds on the quantifying type
variable. Where bounds are not given we use ∃∅.Object as the default up-
per bound and ⊥ as the default lower bound. For instance, C<?¢ Shape> is
translated to ∃X→[⊥ ∃∅.Shape].C<X>, and the translation of C<?¤ Shape>
amounts to ∃X→[∃∅.Shape ∃∅.Object].C<X>. We must distinguish different
occurrences of the wildcard symbol by translating them to distinct type vari-
ables. Hence, Pair<?, ?> translates to ∃X,Y.Pair<X, Y>. Finally, nested wild-
cards are quantified at the immediately enclosing level, so C<C<C<?>>> translates
to ∃∅.C<∃∅.C<∃X.C<X>>>.

A subtle aspect of the translation is that wildcards can inherit their upper
bound from the upper bound of the corresponding formal type variable in the
class declaration. Since we want to avoid doing this in the calculus, we must take
care of this in the translation, which is achieved as in the following example: for
a class C declared as class C<Z¢ Circle>..., the type C<?> is translated to
∃X→[⊥ ∃∅.Circle].C<X>.

When an upper bound is declared both for a wildcard and in the correspond-
ing class declaration, then the ‘smallest’ type is taken as the upper bound, if
the types are subtypes of each other (M). Hence, C<?¢ Shape> is translated to
the same type as in the previous example, and is not a type error. Finally, if the
bounds are unrelated, then the bound from the declaration is taken as the upper
bound of the wildcard, which means that even the type C<?¢ Serializable>
is translated into the same type as the previous two examples.
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This last behaviour implies that the Java type analysis uses a more general
type for some expressions than it would have to in order to maintain soundness
(in the example it could have used the intersection of Circle and Serializable,
but it just uses Circle), and this means that some reasonable and actually
type safe programs will be rejected by the Java compiler. However, it poses no
problems for the soundness of Java, nor for our translation.

The most interesting aspect of the translation is where wildcards meet F-
bounds. An F-bounded type is a type where the formal type variable is bounded
by an expression in which the variable itself occurs. These types are crucial for
modelling common idioms such as subject-observer in Java generics [23]. In the
following example both instantiations of F using wildcards are legal.

class F<X ¢ F<X>> {...}
void m(F<?> x1, F<? ¢ F<?>> x2) {...}

The translation of the types F<?> and F<?¢ F<?>> is not immediately obvi-
ous, because in Java there is no finite type expression for the least supertype of
all legal type arguments to F, i.e., the upper bound of the type argument X is not
denotable in Java. However, in TameFJ this upper bound is, in fact, denotable:
it is just ∃Y→[⊥ F<Y>].F<Y>. Indeed, our translation of F<?> gives this type.
In the case of F<?¢ F<?>> where the wildcard is translated to the fresh variable
Y, the upper bound will be the least subtype of ∃Z.F<Z> (the translation of the
given bound; where Z is fresh) and F<Y> (the bound derived from the class dec-
laration). Since the latter is more strict, it is used, even though this appears to
contradict the rule of using fresh type variables for each wildcard; in fact it does
no such thing, the second wildcard is translated to a fresh type variable, but is
then forgotten.

5 Related Work

In this section we discuss related work. We distinguish three categories: the
evolution of wildcards, formal and informal specifications of Java wildcards, and
related systems with type soundness results.

Wildcards are a form of use-site variance. This means that the variance of
a type is determined at the instantiation of the type. The first uses of variant
generic types in object oriented languages were declaration-site variance, where
the variance of a type is determined by the class declaration. Use-site variance
was first expressed in terms of structural virtual types [23]. The concept de-
veloped into Variant Parametric Types [14] which were extended to give Java
wildcards.

Wildcards in Java are officially (and informally) described in the Java Lan-
guage Specification [11]. Wildcards and generics are described in detail in [3].
Wildcards were first described in a research paper in [24], again informally, but
with some description of their formal properties and of the correspondence to
existential types. The most important formal description of wildcards is the
Wild FJ calculus [17], referred to throughout this paper. Wildcards have also
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been described in terms of access restriction [26] and flow analysis [8] (actually
Variant Parametric Types).

Variant Parametric Types [14] could be thought of as a partial model for
Java wildcards (notably missing wildcard capture, but different in several subtler
ways also). The calculus in [14] was proven type sound and as such it can be
regarded as a partial soundness result for wildcards. In [5] we describe a sound
partial model for wildcards using a more traditional existential types approach.
In particular, the calculus has explicit open and close expressions, as opposed
to the implicit versions found in this paper and in other approaches [14,17].
Subtyping of existential types in [5] is taken from the full variant of System F<:

with existential types [10], rather than the wildcards style subtyping, exemplified
in the XS-Env rule in this paper. The soundness result for that system follows
those of FGJ and traditional existential types closely. However, it is only a partial
result; the system lacks lower bounds amongst other restrictions.

6 Conclusion and Future Work

In this paper we have presented a formal model for Java with wildcards, TameFJ,
and a type soundness proof for this formalism. To the best of our knowledge, this
is the first type sound model for wildcards that captures all the significant fea-
tures for soundness. We have shown through discussion and a formal translation
that TameFJ is a satisfactory model for Java wildcards.

Future Work We are investigating several directions for future work. The most
straightforward is to extend our model to include imperative features. Previous
work with existential types found issues that only occurred in an imperative
setting [12]; although we do not believe these issues affect our result, a proof for
an imperative system would settle this matter once and for all. To complete the
argument for type soundness in Java, we would like to prove soundness for the
translation described in Sect. 4, expanded to expressions. Another interesting
property for Java wildcards would be the decidability of typing and type infer-
ence. Such questions have been investigated elsewhere [15,19], but there is no
complete answer specifically for Java.

We would like to apply the tools developed for this work, i.e., existential
types for variance, in other settings. For example, ownership types, where an
‘any’ or ‘?’ parameter or ad hoc existential types often appear [1,4,16,28]; or
virtual classes [9,18]. We would also like to further develop the use of existential
types to give programmers a better understanding of how to use wildcards.
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A Summary of Lemmas

For all lemmas and theorems we require the additional premise that the program
is well-formed, i.e., for all class declarations, Q, in the program, ` Q ok. Lemmas
in the text have not been repeated, some lemmas have been omitted; full proofs
of all lemmas can be downloaded from:

http://www.doc.ic.ac.uk/˜ncameron/papers/cameron ecoop08 full.pdf

Lemma 1 (Substitution preserves subclassing). If ` R @@: R′ then
` [T/X]R @@: [T/X]R

′
.

Proof is by structural induction on the derivation of ` R @@: R′.

Lemma 2Lemma 3 (Substitution on U preserves sift). If sift(R, U, Y) = (Rr, Tr)
and (fv(T) ∪ X) ∩ Y = ∅ then sift(R, [T/X]U, Y) = (Rr, [T/X]Tr).

Proof is by structural induction on the derivation of sift(R, U, Y) = (Rr, Tr).
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Lemma 4 (Substitution on R preserves sift). If sift(R, U, Y) = (Rr, Tr)
and f is a mapping from and to types in the syntactic category R. then
sift(f(R), U, Y) = (f(Rr), Tr).

Proof is by structural induction on the derivation of sift(R, U, Y) = (Rr, Tr).

Lemma 5Lemma 6Lemma 7Lemma 8Lemma 9Lemma 10 Proof. structural
Lemma 11 (Weakening of Typing).

If dom(∆,∆′,∆′′′) ∩ dom(∆′′) = ∅ and dom(Γ, Γ ′′) ∩ dom(Γ ′) = ∅ and
∆,∆′;Γ, Γ ′′ ` e : T |∆′′′ then ∆, ∆′′,∆′; Γ, Γ ′, Γ ′′ ` e : T |∆′′′ and

Proof is by structural induction on the derivation of ∆,∆′; Γ, Γ ′′ ` e :
T |∆′′′.

Lemma 12Lemma 13 (Extension of type environments preserves well-formedness).
If ∆ ` ∆′ ok and ∆, ∆′ ` ∆′′ ok then ∆ ` ∆′,∆′′ ok.

Proof is by structural induction on the derivation of ∆ ` ∆′ ok.

Lemma 14Lemma 15Lemma 16Lemma 17 similar to case XS-Trans
Corollary If ∆ ` ∃∆′.N <: ∃∆′′.N′ and ` ∆ ok then ∆ ` ∃∆′.N @: ∃∆′′.N′.Lemma 18Lemma 19Lemma 20Lemma 21 (Subsititution preserves typing).

If ∆; Γ ` e : T |∆′′ and ∆1 ` T <: [T/X]Bu and ∆1 ` [T/X]Bl <: T
and ∆ = ∆1, X→[Bl Bu],∆2 and ∆′ = ∆1, [T/X]∆2 and X ∩ fv(∆1) = ∅
and ∆1 ` T ok and ∅ ` ∆1 ok and ∆1, X→[Bl Bu] ` ∆2 ok then
∆′; [T/X]Γ ` [T/X]e : [T/X]T | [T/X]∆′′.

Proof is by structural induction on the derivation of ∆; Γ ` e : T |∆′′.

Lemma 22 (Superclasses are well-formed). If ` R @@: R′ and ∆ ` R ok
and ∅ ` ∆ ok then ∆ ` R′ ok.

Proof is by structural induction on the derivation of ` R @@: R′.

Lemma 23 (Subclassing preserves field types).
If ` N @@: N′ and fType(f, N′) = T then fType(f, N) = T.
Proof is by structural induction on the derivation of ` N @@: N′.

Lemma 24 (Subclassing preserves method return type). If ` N1 @@: N2

and mType(m, N2) = <Y¢ Tu>T→T then mType(m, N1) = <Y¢ Tu>T→T.
Proof is by structural induction on the derivation of ` N1 @@: N2.

Lemma 25 (Expression substitution preserves typing). If ∆; Γ, x:U `
e : T |∆′ and ∆; Γ ` e′ : U′ | ∅ and ∆ ` U′ <: U and ∆ ` U ok then
∆;Γ ` [e′/x]e : T |∆′. Proof is by structural induction on the derivation of
∆;Γ, x:U ` e : T |∆′.

Lemma 26Lemma 27Lemma 28Lemma 29 (match gives well-formed types). If ∆ ` P ok and ∆ `
∃∆.R ok and ∅ ` ∆ ok and match(R, ∃∆′.R′, P, Y, T) then ∆, ∆ ` T ok.

Lemma 30 (Typing gives well-formed types).
If ∆; Γ ` e : T |∆′ and ∅ ` ∆ ok and ∀x ∈ dom(Γ ) : ∆ ` Γ (x) ok

then ∆,∆′ ` T ok.
Proof is by structural induction on the derivation of ∆; Γ ` e : T |∆′.

Lemma 31Lemma 32Lemma 33Lemma 34Lemma 35Lemma 36Lemma 37Lemma 38Lemma 39Lemma 40
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