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Abstract. Ownership types characterize the topology of objects in the
heap, through a characterization of the context to which an object be-
longs. They have been used to support reasoning, memory management,
concurrency, etc. Subtyping is traditionally invariant w.r.t. contexts,
which has often proven inflexible in some situations. Recent work has
introduced restricted forms of subtype variance and unknown context,
but in a rather ad-hoc and restricted way.
We develop Jo∃, a calculus which supports parameterisation of types, as
well as contexts, and allows variant subtyping of contexts based on exis-
tential quantification. Jo∃ is more expressive, general, and uniform than
previous works which add variance to ownership languages. Our explicit
use of existential types makes the connection to type-theoretic founda-
tions from existential types more transparent. We prove type soundness
for Jo∃ and extend it to Jo∃deep which enforces the owners-as-dominators
property.

1 Introduction

Ownership types [9,10,11] support a characterization of the topology of objects
in the heap. They have been successfully applied in many areas. Boyapati [3]
et al. annotated several Java library classes and multithreaded server programs,
effectively preventing data races. Vitek et al. used ownership types to support
memory management in real time systems, with applications such as flying un-
manned aircraft [2], while Aldrich et al. used ownership to enforce software
architectures in large, real-world software [1].

Usually ownership types are expressed by classes parameterised by formal
context parameters, e.g., class C<o1,o2,o3> {...}, and types parameterised
by actuals, e.g., C<this,o2,o2>. Context parameters represent objects. The first
context parameter denotes the owner of the corresponding object. We say that an
object is inside its owner, and all transitive owners of the latter. This implicitly
defines a tree structure of owners in the heap.

Deep ownership systems enforce the owners-as-dominators property [11,9],
which requires that the path to any object o from the root object passes through
the owner of o. That is, objects are dominated by their owners. Such encapsulated
objects are protected from direct and indirect access.
? Author’s current address is Victoria University of Wellington, New Zealand.



In many variations of ownership types [9,10,22,23], actual context parameters
must be known and invariant: they must not vary with execution or subtyping;
i.e., C<o1> is not a subtype of C<o2> even if o1 is inside o2. This follows generic
types: List<Dog> is not a subtype of List<Animal>.

Recent work on ownership types has introduced the concept of unknown,
flexible contexts: universe types [13] support the annotation any, MOJO [6] uses
the context parameter ?, and effective ownership [19] uses an any context. These
unknown owners introduce variant subtyping, whereby, e.g., C<o> is a subtype
of C<?>. Variant ownership types [18] support variance annotations to more
precisely describe variance properties of ownership types.

All these systems are somewhat ad hoc in formalisation — there is no direct
link to the underlying theory of existential types. In particular, they do not
support:

1 two or more context parameters are unknown, but known to be the same,
e.g., in the type ∃o.C<o,o>;

2 context polymorphic methods [9,23] in the presence of variant contexts;
3 upper and lower bounds on variant contexts;
4 scoping of unknown contexts, e.g., to distinguish a list of students which may

have different owners, from a list of student which share the same unknown
owners, i.e., List<this, ∃o.Student<o>>, and ∃o.List<this, Student<o>>.

To bridge this gap, we develop Jo∃, which has its foundations in existential
types and supports all these features. Jo∃ is a purely descriptive system, in that it
only describes the heap topology, and guarantees that the topology is preserved,
but does not restrict the topology in any way. We then develop a flavour of Jo∃,
called Jo∃deep, which also supports deep ownership. We have distinguished deep
ownership from the existential aspects, because descriptive ownership systems
are useful in their own right (e.g., to support reasoning with effects).

Jo∃ is a foundational, rather than usable, system. We expect it to be useful
to reason about variance in ownership systems and to compare the various im-
plementations of ownership variance. Whilst it is expressive and powerful, Jo∃
is verbose. Practical adoption of Jo∃ would require heavy syntactic sugaring.

Recent work with Java wildcards and similar systems [7,5,16,20] has used
existential types to implement and formalise subtype variance in object-oriented
languages. In these systems existential types are often implicit [20,16], a more
programmer-friendly syntax obscures the underlying existential types. Packing
and unpacking are usually implicit, even where quantification is explicit [5].

We use existential quantification of contexts to implement variant ownership.
This solution is uniform and clearly related to its theoretical underpinnings;
typing and the underlying mechanisms are refelcted in the syntax. Furthermore,
in combination with type parameterisation, it is extremely expressive.

Outline In Sect. 2 we give an example explaining and motivating Jo∃. We present
Jo∃ in Sect. 3 and Jo∃deep in Sect. 4. We discuss these languages in Sect. 5 and
their relation to related work in Sect. 6. We conclude in Sect. 7
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2 Example

In this example we use a sugared syntax1, rather than the verbose Jo∃ syntax,
with implicit packing and unpacking of existential types. Such implicit packing
and unpacking appears, for example, in Java wildcards; mapping from the sug-
ared version to Jo∃ is simple [4]. We use o→[a b] to denote that the formal
context parameter o has the lower bound a and upper bound b, that is, any
instantiation of o must be inside b and outside2 a in the ownership hierarchy.

class Worker<manager, company outside manager> {
List<this, Worker<manager, company>> colleagues;
∃o→[⊥ company].List<this, Worker<o, company>> workGroup;
∃o→[manager company].Worker<o, company> mentor;

void mixGroups() {
workGroup = colleagues;
//colleagues = workGroup; ERROR
//colleagues.add(workGroup.get(0)); ERROR
//workGroup.add(colleagues.get(0)); ERROR

}
}

class Company extends Object<©> {
Worker<this, this> director;
Worker<director, this> headOfMarketing;
∃o→[⊥ director].Worker<o, this> employeeOfTheMonth;
List<this, ∃o→[⊥ this].Worker<o, this>> payroll;

<m> void processColleagues(Worker<m, this> w) {
for (Worker<m, this> c : w.colleagues) { ... }

}

void mentorEmpMonth() {
employeeOfTheMonth.mentor = director;
//employeeOfTheMonth.mentor =
// new Worker<headOfMarketing, this>; ERROR

}
}

Our example is part of a human resources system for a large company. Each
worker in the company is owned by its manager; the employees form a hierarchy
with the director at its root. In the Worker class, each worker keeps a list of his
1 We also use fields as context parameters. This is not implemented in Jo∃, but is a

relatively easy extension. It is present in, for example, MOJO [6]
2 We say o outside o′ to mean o′ inside o.
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colleagues. Each colleague is a Worker with the same manager as this. In the
Company class, we store references to the director and the head of marketing,
whose immediate manager is the director.

So far, we have only used features present in classical ownership types sys-
tems. We use existential types where the precise owner of objects is unknown and
highlight the features listed in the previous section, e.g.,1. In the Worker class,
mentor is some worker who either works with or indirectly manages that worker,
but whose exact position in the management hierarchy is not specified (3). A
worker may work with some other team of workers in the company (a team is
assumed to have a single manager). For example, an engineer may have contact
with the management team. This group (workGroup) may have any manager in
the company, and this is represented by the existential type. Since we assume
all members of the group have the same owner, the existential quantification is
outside the List (4).

In the Company class, the employeeOfTheMonth may be any Worker in the
company, her manager is not important. The payroll keeps track of every worker
in the company. Each worker on the payroll may have a different manager.

The method processColleagues takes a worker (w) as a parameter and
performs some action on each of his colleagues. Since the method is polymorphic
in the manager (m) of w, we can name m as the owner of w’s colleagues, c (2).

In mixGroups we can set workGroup to colleagues because manager (the
manager of colleagues) is within the bounds specified in the type of workGroup.
We cannot set colleagues to workGroup, nor add an element of colleagues
to workGroup, because workGroup may have any manager, not necessarily this.
Even though we can set workGroup to colleagues, we cannot add an element
of colleagues to workGroup because although the owner of the workGroup may
be any owner, it is a specific owner and not necessarily manager3.

Owners-as-dominators. Even in a deep ownership system it can be safe and de-
sirable to support subtype variance. A Worker instance and his mentor (though
not his workGroup) satisfy owners-as-dominators in Jo∃deep. mentorEmpMonth
sets the mentor of the employeeOfTheMonth to the director. This preserves
owners-as-dominators since the director must transitively manage (own) the
employeeOfTheMonth, no matter who that is. Setting the employeeOfTheMonth’s
mentor to a new worker owned by the headOfMarketing would violate owners-
as-dominators and is not allowed. This is because the employeeOfTheMonth may
not be transitively owned by this new worker.

3 Jo∃
In this section we present the most interesting parts of Jo∃, a minimal object-
oriented language in the style of FGJ [15], with parametrisation of methods and

3 here, the owner is manager due to the earlier assignment, but in general it will be
unknown.
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classes by context and type parameters, and existential quantification of con-
texts. In order to demonstrate ownership properties, we include field assignment
and a mutable heap. Jo∃ is fully described in the first author’s PhD thesis [4]
along with much extra detail that could not be included here for space reasons.

Subtype variance in Jo∃ is implemented by existential quantification. Exis-
tential types are explicit and are introduced and eliminated (packed and un-
packed) using close and open expressions. Thus, we follow the more traditional
model of existential types [7], rather than the Java 5.0 approach of using implicit
packing and unpacking.

Neither the ownership or existential quantification features of Jo∃ interact
with subclassing. Furthermore, the benefits of existential quantification in Jo∃ do
not depend on subclassing, nor the absence of subclassing. For these reasons, and
because the standard solution to subclassing in ownership types systems is long
known [10], we elide subclassing and inheritance. This simplifies the presentation
of Jo∃ and its proofs. Jo∃ could be extended to include subclassing by extending
the subtyping and method and field lookup rules following FGJ [15]. Subclassing
must preserve the formal owner of an object [10]. There are no changes to any
of the rules involving quantification.

We are primarily interested in type parameterisation to increase expressive-
ness of ownership types, rather than to investigate features of generic types.
We therefore treat type parameterisation simply and do not support bounds on
formal type parameters, nor existential quantification of type variables.

e ::= null | x | γ.f | γ.f = e | γ.<a, T>m(e) | expressions
new C<a, T> | open e as x,o in e |
close e with o→[b b] hiding a | ι | err

Q ::= class C<∆, X> {T f; W} class declarations
W ::= <∆, X> T m(T x) {return e;} method declarations

v ::= close v with o→[b b] hiding r | ι | null | err values

N ::= C<a, T> class types

R ::= C<r, T> runtime types

M ::= N | X non-existential types
T ::= M | ∃∆.N types

Ψ ::= X→[bl bu] type environments

∆ ::= o→[bl bu] context environments
γ ::= x | ι | null vars and addresses
Γ ::= γ:T var environments

H ::= ι →{R; f→v} heaps

a ::= o | x | © | ι contexts

r ::= © | ι runtime contexts

b ::= a | ⊥ bounds

x, y variables
X, Y type variables
o formal owners
C classes
ι addresses

Fig. 1. Syntax of Jo∃.
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Syntax. The syntax of Jo∃ is given in Fig. 1. Entities only used at runtime are in
grey . Jo∃ includes expressions for accessing variables (x, which includes this)
and addresses (ι), object creation, null (for field initialisation), field access and
assignment, method invocation, and packing and unpacking of existential types.

Class and method declarations (Q and W) are parameterised by context (o)
and type (X) parameters. The former have upper and lower bounds (bounds
are actual context parameters — not subtype bounds — and limit the bounded
formal context to some part of the ownership hierarchy), and so methods and
classes are considered to be parameterised by context environments (∆). These
are mappings from formal context parameters to their bounds (o→[bl bu]).

Contexts (a) consist of context variables (o), variables (x) and the world
context (the root object), ©. At runtime we may also use addresses. Runtime
contexts (r) are restricted to addresses and ©.

Variable environments, Γ , map variables to their types. Type environments,
Ψ , map type variables to bounds on a context. Type variables do not have bounds
on the types they may take. The bounds contained in Ψ define upper and lower
bounds on the owner of actual types. If the lower and upper bounds on the
owner of X are bl and bu, then for C<o> to instantiate X, o must be outside bl

and inside bu. The bounds in Ψ are manufactured by the type system (in T-
Class in Fig. 4 and T-Method [4]) and cannot be defined by the programmer.
In Jo∃ and Jo∃deep, upper bounds in Ψ are always © and, in effect, are never
used; however, we keep upper bounds to allow for easy extension. We only use
the lower bound to support deep ownership in Jo∃deep (Sect. 4).

To model execution we use a heap, H, which maps addresses (ι) to records
representing objects. Each record contains the type of the object and a mapping
from field names to values. Values (v) are addresses or close expressions that
pack addresses.

Types in Jo∃. The syntax of types in Jo∃ is given in Fig. 1. Class types (N)
are class names parameterised by actual type and context parameters. The first
context parameter is the owner of objects with that type. Class types may be
existentially quantified by a context environment to give existential types. For
example, ∃o.List<o, Animal> denotes a list owned by some owner. For concise-
ness in examples, we omit bounds and empty parameter lists where convenient.

By combining existential quantification with type parameterisation we can
express many interesting and useful types: ∃o.List<o, Animal<this>> denotes
a list owned by some unknown owner where each element is an Animal owned
by this, while ∃o1,o2.List<o1, Animal<o2>> denotes a list owned by some
owner where all elements are owned by the same owner which may be different
from the owner of the list, and ∃o1.List<o1, ∃o2.Animal<o2>> denotes a list
where each element is owned by some owner and the owner of each element may
be different, finally, ∃o.List<o, Animal<o>> denotes a list where each element
in the list and the list itself are owned by the same, unknown, owner.

Subtyping and the Inside Relation. The inside relation relates contexts and is
defined by the rules given in Fig. 2. We say that o1 is inside o2 (∆;Γ ` o1 ¹ o2),
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∆; Γ ` M <: M

(S-Reflex)

∆; Γ ` bu ¹ b′u ∆; Γ ` b′l ¹ bl

∆; Γ ` ∃o→ [bl bu].N <: ∃o→ [b′l b′u].N

(S-Full)

∆; Γ ` b ¹ b

(I-Reflex)

∆; Γ ` b ¹ b′′ ∆; Γ ` b′′ ¹ b′

∆; Γ ` b ¹ b′

(I-Trans)

∆; Γ ` b ok

∆; Γ ` b ¹ ©
(I-World)

∆; Γ ` b ok

∆; Γ `⊥¹ b

(I-Bottom)

Γ (γ) = C<a, T>

∆; Γ ` γ ¹ a0

(I-Owner)

∆(o) = [bl bu]

∆; Γ ` o ¹ bu

∆; Γ ` bl ¹ o

(I-Bound)

Fig. 2. Jo∃ subtyping, and the inside relation for owners and environments.

if o1 is transitively owned by o2. The inside relation is reflexive, transitive, and
has top and bottom elements — the world and bottom contexts, respectively.
I-Owner asserts that every variable and address is inside the declared owner of
its type (if its type is a class type). For example, if this has type C<o>, then
this is inside o. I-Bound gives that a formal context is within its bounds.

Subtyping is also given in Fig. 2. Since there is no subclassing in Jo∃, sub-
typing of non-existential types is given only by reflexivity. Subtyping between
existential types follows the full variant of existential subtyping [14,7]. Existen-
tial types are subtypes where the bounds of quantified contexts in the subtype
are more strict than in the supertype.

o ∈ dom(∆)

∆; Γ ` o ok

(F-Owner)

∆; Γ ` © ok

(F-World)

∆; Γ `⊥ ok

(F-Bottom)

Γ (γ) = N

∆; Γ ` γ ok

(F-Var)

class C<o→[bl bu], X>... ∆; Γ ` a ok

∆; Γ, this:C<a, X> ` [a/o]bl ¹ a ∆; Γ, this:C<a, X> ` a ¹ [a/o]bu

Ψ ; ∆; Γ ` T ok |T| = |X|
Ψ ; ∆; Γ ` C<a, T> ok

(F-Class)

X ∈ dom(Ψ)

Ψ ; ∆; Γ ` X ok

(F-Type-Var)

∆; Γ ` o→[bl bu] ok

Ψ ; ∆, o→[bl bu]; Γ ` N ok

Ψ ; ∆; Γ ` ∃o→[bl bu].N ok

(F-Exist)

Fig. 3. Jo∃ well-formed contexts and types.

Well-formedness. Well-formed contexts and types are given in Fig. 3. An owner
variable is well-formed if it has class type; this guarantees precise information
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about all unquantified contexts, and that the set of contexts is closed under
substitution. This restriction abides by the philosophy of existential types, that
abstract packages must be unpacked to be used.

Well-formed class types (F-Class) require the class name to have been de-
clared, actual context parameters to be within the bounds of formal context
parameters, the number of actual type parameters to match the number of for-
mal type parameters, and actual context and type parameters to be well-formed.
Well-formed environments (used in F-Exists) are elided, the only interesting as-
pect is that we require the lower bound of each context variable to be inside its
corresponding upper bound.

To check that actual context parameters are within their corresponding
bounds, the judging environments are extended with this mapped to C<a, X>,
i.e., the class type with actual context parameters and formal type parameters.
This is necessary because bl and bu may involve this. We cannot substitute for
this, because there may not be a variable or address that contains the object to
be substituted. We use a mixture of actual context parameters (a) and formal
type parameters (X) because of the order of application of substitution lemmas
in the proofs. Using X is safe, even though X are not in scope, because the type
parameters of types are never used in the rules defining the inside relation.

Ψ ; ∆; Γ ` γ : N
fType(f, γ, N) = T

Ψ ; ∆; Γ ` γ.f : T

(T-Field)

Ψ ; ∆; Γ ` γ : N
fType(f, γ, N) = T

Ψ ; ∆; Γ ` e : T

Ψ ; ∆; Γ ` γ.f = e : T

(T-Assign)

Ψ ; ∆; Γ ` C<a, U> ok

Ψ ; ∆; Γ ` new C<a, U> : C<a, U>

(T-New)

Ψ ; ∆; Γ ` γ : N Ψ ; ∆; Γ ` e : T

∆; Γ ` a ok Ψ ; ∆; Γ ` U ok
mType∆;Γ (m<a, γ, U>, N) = T→T

Ψ ; ∆; Γ ` γ.<a, U>m(e) : T

(T-Invk)

Ψ ; ∆; Γ ` e : ∃o→[bl bu].N

Ψ ; ∆, o→[bl bu]; Γ, x:N ` e′ : T
Ψ ; ∆; Γ ` T ok

Ψ ; ∆; Γ ` open e as x,o in e′ : T

(T-Open)

∆; Γ ` [a/o]bl ¹ a ∆; Γ ` a ¹ [a/o]bu ∆; Γ ` a ok

Ψ ; ∆; Γ ` e : [a/o]N Ψ ; ∆; Γ ` ∃o→[bl bu].N ok

Ψ ; ∆; Γ ` close e with o→[bl bu] hiding a : ∃o→[bl bu].N

(T-Close)

Ψ = X→[⊥©]

∅; this:C<o, X> ` o→[bl bu] ok Ψ ; o→[bl bu]; this:C<o, X> ` W, T ok

` class C<o→[bl bu], X> {T f; W} ok

(T-Class)

Fig. 4. Jo∃ expression and class typing rules.
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Typing. Type rules are given in Fig. 4. Field and variable access (T-Field
and T-Var) are close to those of FGJ [15]. Field assignment (T-Assign) is a
straightforward extension of field access. We adopt the standard subsumption
rule (T-Sub). In object creation (T-New), we create uninitialised objects, we
do not support constructors. T-Null allows null to take any well-formed type.
Method invocation is also close to FGJ, with the addition that actual context
parameters must be well-formed and within their corresponding formal bounds.

In T-Field, T-Assign, and T-Invk, the receiver is restricted to γ. This
allows us to substitute γ for this in field and method types without requiring
dependent typing. Expressivity is not lost since the programmer can use an open
expression with empty o to act as a let expression.

To type check open and close expressions we follow Fun [8] and other clas-
sical existential types systems. The type of expression e is unpacked to an owner
environment, o→[bl bu], and unquantified type, N. We then judge the body
of open (e′) by extending ∆ with o→[bl bu] and adding a fresh variable, x,
with type N to Γ ; x stands for the unpacked value of e. We ensure no variables
escape the scope of the open expression by checking that the result type, T, is
well-formed without o or x.

The close expression packs an expression e by hiding some of the context
parameters present in e’s type. For example, if e has type C<this>, then the
expression close e with o hiding this has the existential type ∃o.C<o>.
Example. The assignment employeeOfTheMonth.mentor = director from the
example in Sect. 2 is represented with explicit packing and unpacking as:

open employeeOfTheMonth as e,m in
e.mentor = close director with o→[m this] hiding this;

Under an environment where e has type Worker<m, this>, the close and as-
signment expressions have type ∃o→[m this].Worker<o, this> by T-Close,
and by T-Assign and S-Reflex, respectively. By T-Subs, S-Full, and I-
Bttm, the assignment has the m-free type ∃o→[⊥ this].Worker<o, this>.
employeeOfTheMonth (of type ∃m→[⊥ director].Worker<m, this>) can be
unpacked as e (of type Worker<m, this>), used in type checking the assign-
ment, and therefore T-Open can be applied, giving the entire expression the
type ∃o→[⊥ this].Worker<o, this>.

Dynamic Semantics. We elide most of the operational semantics of Jo∃, they
are mostly standard4. Reduction of open and close expressions is given by the
following rule, taken from the classical formulations of existential types [21]:

open (close v with o→[bl bu] hiding r) as x,o in e;H ; [r/o, v/x]e;H
The open and close sub-expressions are eliminated, leaving the body of open

(e) with formal variables replaced by the packed value and hidden contexts. For
example, open (close 3 with o hiding 2) as x,o in (this.<o>m(x)), where
2 and 3 are addresses, reduces to this.<2>m(3) (we replace x by 3 and o by 2).
4 Object creation, performed in R-New, creates a new object with all its fields set to
null; i.e., we do not support constructors.
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∀ι → {C<r, T>; f→v} ∈ H :
∅; ∆;H ` C<r, T> ok

fType(f, ι, C<r, T>) = T′ ∅; ∆;H ` v : T′

∀v ∈ v : add(v) defined ⇒ add(v) ∈ dom(H)

∆ ` H ok

(F-Heap)

∆ ` H ok
∀ι ∈ fv(e) : ι ∈ dom(H)

∆;H ` e ok

(F-Config)

Fig. 5. Jo∃ well-formed heaps and configurations.

In Fig. 5 we give the definitions of well-formed heaps and configurations.
Most premises are standard. We insist that the address of all referenced values
are in the domain of the heap. The address of a value is given by the partial
function add, defined as:

add(v) =





ι, if v = ι
add(v′), if v = close v′...
undefined, otherwise

which recursively unwraps abstract packages, returning the address within. Thus,
add(v) is defined if v is neither null nor null wrapped in a close expression.

Type Soundness. Type soundness in Jo∃ guarantees that the types of variables
accurately reflect their contents, including ownership information. Furthermore,
the ownership hierarchy defined statically in a program describes the heap when
that program is executed. Although these properties do not constitute an en-
capsulation property, they are necessary when using ownership information to
reason about programs, for example using effects [10]. We show type soundness
for Jo∃ by proving progress and preservation (subject reduction):

Theorem (progress) For any H, e, T, if ∅; ∅;H ` e : T and ∅ ` H ok
then either there exists H′, e′ such that e;H ; e′;H′ or there exists v
such that e = v.

Theorem (subject reduction) For any ∆,H,H′, e, e′, T, if ∅; ∆;H `
e : T and e;H ; e′;H′ and ∆;H ` e ok and ∅;H ` ∆ ok and e′ 6= err
then ∅; ∆;H′ ` e′ : T and ∆;H′ ` e′ ok.

Proofs are given in [4] and can be downloaded from:
http://www.doc.ic.ac.uk/˜ncameron/papers/cameron esop09 proofs.pdf

4 Jo∃deep

Jo∃deep enforces the owners-as-dominators property. It differs from Jo∃ only in its
definition of well-formed types, heaps, and classes. We define auxiliary functions
to find the owner of an object in the heap (ownH(v)) and the owner of objects
with type T (ownΨ (T)) in Fig. 6.

The owner of objects of type X is the lower bound on the owner of X, recorded
in Ψ . To find the owner of objects with existential type (∃∆.C<a, T>), we must
find a context that is not quantified and that is inside the declared owner of the
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ownΨ (C<a, T>) = a0

Ψ(X) = [bl bu]

ownΨ (X) = bl ownΨ (∃∆.C<a, T>) = glb∆(a0)

b 6∈ dom(∆)

glb∆(b) = b

∆(o) = [bl bu]

glb∆(o) = glb∆(bl)

H(ι) = {C<r, T> ...}
ownH(ι) = r0 ownH(close v with o→[bl bu] hiding r) = ownH(v)

Fig. 6. Owner lookup functions for Jo∃deep.

type (a0). This is accomplished by the glb function; glb∆(b) finds the outermost
object that is inside b and not in the domain of ∆.

The owners-as-dominators property manifests itself as an extra constraint on
well-formed heaps; thus, we extend F-Heap (Fig. 5) as follows:

...
∀ι ∈ H ∀v ∈ H(ι) ∆;H ` ι ¹ ownH(v)

∆ ` H ok

(F-Heap)
Similarly, Jo∃deep requires some modifications to the well-formedness rules

for class types and classes of Jo∃:
...

∀ai ∈ a : ∆;Γ ` a0 ¹ ai

∀Ti ∈ T : ∆;Γ ` a0 ¹ ownΨ (Ti)
Ψ ; ∆;Γ ` C<a, T> ok

(F-Class)

...

Ψ = X→[o0 ©]
⊥6∈ T, o→[bl bu]

` class C<o→[bl bu], X> {T f; W} ok

(T-Class)

The extra premises in F-Class (together with the well-formedness rules for
contexts) ensure that only contexts that are outside an object can be formed by
substitution of actual for formal parameters in its class. The owner of an object
(a0) is, by definition, outside that object. The first extra premise ensures that
the actual context parameters are outside a0. The second premise ensures that
the owners of any actual type parameters are outside a0. Therefore, all types
formed by substitution of contexts or types will have an owner outside this.

In T-Class we change the way Ψ is created; the lower bounds in Ψ are the
formal owner of the class rather than ⊥. This is required because of the changes
we made to F-Class. The class declaration class C<o, X> { C<o, X> f; }
would not type check without this change: otherwise C<o, X> would not be
well-formed because ownΨ (X) could not be derived to be outside o.

The second extra premise in T-Class requires that ⊥ cannot appear as a
bound in the formal context parameters of the class, nor in any existential types
given to fields in the class. The intention is to ensure that the owner of all objects
referenced by objects of the class (including the hidden owner of objects with
existential type) is outside the referring object. Therefore, in the example in
Sect. 2, the declaration of workGroup would be illegal in Jo∃deep.

We state the owners-as-dominators property in Jo∃deep as:
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Theorem (Owners-as-dominators) For any H, if ∆ ` H ok then
∀ι → {R; {f→ v}} ∈ H,∀vi ∈ v : ∆;H ` ι ¹ ownH(vi)

This is given by the added premise to F-Heap; we prove that this is main-
tained under execution as part of the proof of subject-reduction [4].

5 Discussion

The expressivity of types in Jo∃ comes from the combination of existential quan-
tification of contexts and type parameterisation. The formalisation of Jo∃ follows
from these starting points and the decision to use explicit packing and unpack-
ing, which simplifies the type rules and proofs for Jo∃. The natural and uniform
emergence of the calculus is reassuring.

Allowing packed values to be be values (and thus stored in the heap) follows
earlier work [8,21,14] on existential types and is a natural consequence of ex-
plicit packing. However, the owners-as-dominators property is usually phrased
assuming that all values are objects (addresses in Jo∃). We must therefore con-
sider how to describe owners-as-dominators in the presence of packed values. We
do this by not distinguishing between packed values and the objects that they
abstract. This ensures that existential quantification cannot hide violations of
owners-as-dominators.

In the type system of Jo∃deep, we had to extend the usual restrictions found in
ownership systems to enforce owners-as-dominators. Requiring context parame-
ters to be outside an object’s owner is standard, we needed to extend this to deal
with quantified context variables and type parameters. The crucial observation
is that, in enforcing owners-as-dominators, we always wish to show that a value
is outside the object that refers to it. It is therefore conservative to use a lower
bound on a value’s owner rather than the value’s owner itself. The additional
premises in F-Class of Jo∃deep can thus deal with lower bounds on parameters.
In the case of quantified context parameters this means that we can use their
greatest lower bound. For type parameters we use the lower bound stored in Ψ ;
this motivates using Ψ in Jo∃ rather than just a set of type variables.

6 Related Work

Generics and Ownership Types. Type and ownership information in ownership
types systems is usually kept separate [9,12,25], as in Jo∃. Surprisingly, in OGJ
[22], these two kinds of parameters can be expressed using only type parameters.
This leads to a small and uniform extension of generic Java that implements deep
ownership. The fact that context parameterisation can be encoded using type
extension highlights the similarity of the two systems. It will be interesting future
work to add Jo∃’s existential types to OGJ and, it is hoped, reap the benefits of
Jo∃ in a more realistic language.
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Existential Types. Existential quantification of ownership domains in System
Fown [17] allows domains to be passed around even if they cannot be named.
System Fown supports existential quantification of types, absent in Jo∃, but does
not support subtyping and so existential quantification does not lead to variance.

Infinitary ownership types [9] use existential types to abstract contexts which
cannot be named. Because of dynamically created contexts, this is necessary
to avoid dependent typing. Existential types in Jo∃ can be used in the same
way. However, since contexts cannot be dynamically created, abstraction is not
necessary to avoid dependent typing.

Existential owners can be used in dynamic casts [24]. Casts are not supported
in Jo∃, but they should be straightforward to add. Existential downcasting could
then be encoded in Jo∃ by casting using an existential type.

Variance. Variant ownership types [18] are a programmer friendly way to sup-
port use-site subtype variance, and have very similar behaviour to existential
types. Jo∃ types are more expressive as they allow lower and upper bounds on
contexts (as opposed to upper or lower bounds), type parameters, and explicit
quantification (to express types such as ∃o.C<o, o>).

MOJO [6] uses ? to denote an unknown context parameter. This corresponds
to an existentially quantified context bounded by ⊥ and © in Jo∃. In MOJO, ?
may be used as an actual context parameter.

In the case of field access, substitution of ? (not found in other systems
such as Wild FJ [20]) produces a similar behaviour to existential types in Jo∃.
To prevent field assignment and method call where ? would appear as a type
parameter by substitution (but not where ? is written in the type), strict method
and field lookup are used. Likewise in Jo∃, field assignment or method call where
the receiver has existential type is type incorrect. Variant types in MOJO are,
therefore, treated in the same way as unbounded existential types in Jo∃.

Universes [13] support limited subtype variance through the any notation.
Universe types can be given corresponding types in Jo∃: any C corresponds to
∃o→[⊥©].C<o>, peer C corresponds to C<o> (where o is the owner of the class
declaration in which the type appears), and rep C corresponds to C<this>. The
viewpoint adaptation5 rules of universes correspond to substitution of owners
and unpacking and packing in Jo∃. Generic universes [12] can be described using
this correspondence and Jo∃’s type parameterisation.

An any context is used to facilitate variance in effective ownership [19]. Dur-
ing field and method type lookup, all substitutions of any for x are replaced with
substitutions of unknown for x. This mechanism is similar to the abstract con-
texts of variant ownership types [18] and ? in MOJO. Similarly to these systems,
it should be possible to encode the ownership structure of effective ownership
in Jo∃. Effective owners (per-method owners) are currently beyond the scope of
Jo∃. An effective owner cannot be any, and so there is no variance aspect to
these owners.
5 Viewpoint adaptation is the change in universe annotations when considering a type

in a different context from the one in which it was declared.

13



In most related work [6,13,18], the treatment of unknown contexts is specific
to the underlying system; our approach is founded in the theory of existen-
tial types and makes clear the relationship between variant types and their be-
haviour. We discuss in more detail how Jo∃ can be used to encode and compare
the systems described in this section in [4].

7 Conclusion and Future Work

Jo∃ supports context variance in a uniform and transparent fashion using exis-
tential types. Expressivity is improved by combining existential quantification of
contexts with type parameterisation. We have extended Jo∃ to support owners-
as-dominators and proved both versions sound.

Jo∃ can be used to compare and encode ownership systems with different
kinds of variance or existential types. Existing mechanisms for supporting con-
text variance have the same behaviour as existential types in Jo∃ and can be
easily encoded (even if other language features cannot). Explicit existential types
can give us a clearer picture of the underlying mechanisms used in type checking.
Jo∃ can also be used to encode existing kinds of existential types in ownership
systems with similar benefits.

We would like to use type parameterisation and context quantification to
improve the expressivity of multiple ownership and ownership domains systems,
and to investigate how existentially quantified contexts can be used in an ef-
fects system. It might be useful to extend Jo∃ with subclassing, bounds on type
variables, and existential quantification of type variables.
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