
OGJ Gone Wild

Nicholas Cameron
Victoria University of Wellington
ncameron@ecs.vuw.ac.nz

James Noble
Victoria University of Wellington

kjx@ecs.vuw.ac.nz

ABSTRACT
Ownership types structure the heap, and can enforce en-
capsulation properties which improve security, provide more
information for the programmer, and allow for better rea-
soning about programs. Ownership Generic Java (OGJ) im-
plements ownership types using Java generics and some ad-
ditional type checking. This allows the programmer to use
generics and ownership types in the same programs with
little addtional syntactic overhead.

We combine Java wildcards (represented formally as ex-
istential types) with OGJ to enforce an ownership topology
using only features of the Java type system. We demonstrate
how the owners-as-dominators encapsulation property can
be enforced by a minimal addition to the well-formedness
rules for types and classes. We show that the type parame-
terisation of Java generics — with wildcards — is sufficient
to enforce ownership.

1. INTRODUCTION
Ownership types are a mechanism for enforcing an hierar-

chical structure over the heap. This is done by considering
each object to be owned by another object (or to be at the
root of the ownership hierarchy). Ownership is statically
enforced by the type system, and objects cannot move in
the ownership graph at runtime. Ownership systems can
support strong encapsulation properties such as owners-as-
dominators, which restricts references in the heap according
to the ownership tree.

There are several approaches to implementing ownership.
One approach [12], is to parameterise types with ownership
information, in much the same way as types are parame-
terised with type information in generic Java. In fact, in
OGJ [24], ownership information is type information; the
Java type system, with a few additions (mostly to handle the
distinguished This owner), is used to define and enforce the
ownership structure. OGJ showed that the parametricity
of ownership types is the same kind of parametricity as the
more familiar and widely studied kind of type parametricity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWACO ’09, July 6 2009, Genova, Italy
Copyright 2009 ACM 978-1-60558-546-8/09/07 ...$10.00.

However, it is philosophically unsatisfactory that OGJ
should require machinery in its type system only to handle
ownership types. In this paper, we describe and formalise a
system that uses only the Java type system to enforce own-
ership, thus eliminating the need for a special treatment of
This. By using wildcards (not dealt with in OGJ) and a
simple well-formedness constraint, we can define an owner-
ship hierarchy and enforce the owners-as-dominators encap-
sulation property. Although we don’t envisage this being
a practical way to support ownership, it demonstrates that
ownership can be enforced using only standard notions of
parametricity — there is nothing exotic about ownership
type systems.

The contributions of this paper are: showing how a simple
pattern for class declaration and type instantiations can en-
force the descriptive aspects of ownership types within the
Java 5.0 type system, formalising ownership types within a
simple formalisation of Java with wildcards, and formalising
the minimal extensions to Java needed to enforce owners-
as-dominators. We present syntax, typing rules, and op-
erational semantics; however, as yet we have no soundness
proof for our system.

In the next section (Sect. 2) we give some background to
this work (Java generics, wildcards, ownership types, and
OGJ); we then discuss how Java with wildcards can be used
to implement ownership types (Sect. 3); next we formalise
this concept in the language WOGJ (Sect. 4); finally we
conclude and discuss possible future work (Sect. 5).

2. BACKGROUND

2.1 Generics
In Java, classes, types, and methods may be parame-

terised with type information. Class and method declara-
tions can take formal type parameters, which can be used in
the body of the class or method. Types and method calls1

are annotated with actual type parameters, which instanti-
ate their formal counterparts. For example, a generic list
class could be declared as:

class List<X> {

X get(int i) {...}

void set(X x) {...}

List<X> copy() {...}

}

1In this paper, we will concentrate on generic classes and
types, and ignore generic methods.

This class can be instantiated as the type List<Book>,
which represents a list of books. Calling get on an object
with this type returns a Book object.

2.2 Wildcards
Subtyping in Java with generics is invariant. That is,

type parameters may not change across subtypes. Assum-
ing the usual hierarchy, ArrayList<Book> is a subtype of
List<Book>; however, List<Book> is not a subtype of
List<Object>. In general it would be unsound to allow such
a relationship, but there are certain circumstances where it
is safe and convenient to allow some form of variance [16].
Wildcards support such variance in Java [19].

A wildcard is an actual type parameter denoted by ‘?’. A
wildcard type is a type parameterised by one or more wild-
cards. The variance of a wildcard type is given by the wild-
cards’ bounds. For example, List<? extends Book> be-
haves covariantly: it is a subtype of List<? extends Object>;
List<? super Object> behaves contravariantly: it is a sub-
type of List<? super Book>; List<?> is bivariant: it is a
supertype of any list.

If a formal parameter has a bound, then this bound is
inherited by the corresponding wildcard. If that wildcard
already has a bound, then the bound used for type checking
will be the more precise of the two. For example, given the
class declaration class C<X extends Book>, then in both
C<?> and C<? extends Object>, the wildcard will have the
upper bound Book.

In order to preserve soundness, the operations which can
be performed on a wildcard type must be restricted. Thus,
get (in the list example above) can be called on
List<? extends Book> and returns a book; however, set

can only be called with null as its parameter. Likewise,
set on List<? super Book> will take a Book, but get will
return an Object.

2.3 Existential Types
Wildcard types are usually modelled using existential types

[25, 8]. List<?> is encoded as ∃X.List<X>. Bounds are
encoded as bounds on the quantified variables (we write
lower and upper bounds inside square brackets [lower up-
per] and we use the bottom type, ⊥, and Object to repre-
sent omitted bounds): List<? extends Book> is encoded as
∃X→[⊥ Book].List<X> and List<? super Book> as
∃X→[Book Object].List<X>.

The subtyping behaviour of wildcard types is given by the
usual subtyping properties of existential types, and the ac-
cess restriction properties are given by packing and unpack-
ing of types (also called closing and opening or existential
introduction and elimination).

2.4 Ownership Types
Ownership types use mechanisms similar to generic types

to manage aliasing relationships between objects. The key
here is to keep track of an object’s representation — the
inside of an object — and prevent that representation from
exposure to the outside [21].

Ownership types [10, 12] do this using two main lan-
guage constructs. First, every class is parameterised with
an ownership context parameter (or owner parameter for
short) that — for each instance — will record informa-
tion about that instance’s ownership. We declare a book
class class Book<o> to indicate that book instances will be

owned by “o”. More sophisticated classes can take addi-
tional ownership parameters to grant permission to access
other objects. A List<o,i> class declares two ownership
parameters: the owner of the list itself o, and the owner of
the list items i:

class List<o,i> {

Link<This,i> next;

Item<i> get (int i) {...}

void set (Item<i> x) {...}

...

}

Note that this code is not type-generic: this list only stores
items of class Item (or subclasses via subsumption). Note
also that this list must have homogeneous ownership: all list
items must be owned by i.

The second language construct needed to implement per-
instance ownership is some way to denote and enforce that
an object belongs to the instance where it is declared. In
this example, the next field — part of the list’s internal
representation — has ownership type Link<This,i>. The
special “This” owner (in some systems declared with a rep

keyword before the type) means that the link objects stored
in this field belong to this particular list instance. (The i

parameter to Link<This,i> permits links to store list items
with ownership i). The type system will have rules ensuring
that types with This in their owner position can only be
accessed by their owning instance, e.g. by restricting access
to calls (implicitly or explicitly) via “this”.

Finally, ownership types require well-formedness constraints
that ensure any subsidiary ownership parameters lie outside
an object’s main owner — so it is permissible to instantiate
e.g. List<This,other> — a list that I own but whose items
are owned elsewhere, while it is not permissible to instantiate
e.g. List<other,This> — a list owned by some other object
but that holds references to objects I own. Taken together,
these restrictions ensure that ownership types support an
“owners-as-dominators” discipline, ensuring that an object
can only be accessed (directly or indirectly) via its owner:
if that access is indirect, it must be only via other objects
that are also inside its owner.

Different types of ownership system have been developed
to support more flexible topologies [13, 1, 5, 9], or a range
of practical applications [11, 28, 3, 4, 6]; implicit ownership
systems (also called confined types) use other syntactic tech-
niques or conventions to represent ownership [20, 26, 29].
Some ownership proposals [21, 13, 2] use keywords rather
than owner parameters to capture the key instance owner,
although theses systems are converging with explicitly pa-
rameterised systems [14, 23].

2.5 Existential Ownership
Existential types have been combined with ownership types

in several ways. They have been used to abstract contexts
to increase flexibility [10, 17], support downcasts without
requiring ownership information to be retained at runtime
[27], and to support subtype variance, both implicitly [13,
9, 18] and explicitly [7]. In these last systems, existen-
tial quantification of contexts is used to give variance for
ownership types, similar to the use of wildcards in Java.
The difference is that variance is with respect to the in-
side relation, rather than subtyping. For example (in [7]),

∃o→[⊥ o1].Book<o>2 is a subtype of ∃o→[⊥ o2].Book<o>,
if o1 is inside o2.

2.6 OGJ
Classical ownership types embody the irony that while the

ownership is generic, the underlying types are not: the code
example in section 2.4 is ownership-generic (lists and items
may have different owners in different instances) but not
type generic (the list is always a list of Items). Some early
proposals [21] suggest separate parametrisation for owners
and types — so a generic list would have three ‘type-ish’
generic parameters: the type of the list items; the ownership
of the list items, and the ownership of the list itself, some-
thing like List<X, o, i>. Unsurprisingly this approach is
quite unwieldy in practice — especially as the type and own-
ership parameters (here the item type X and the item own-
ership i) are almost always used together.

To address this problem, Potanin et al [24, 23] demon-
strated how a single type parameter could carry both owner-
ship and type information simultaneously, by treating own-
ership information as a special kind of type information.
Potanin et al’s Ownership Generic Java (OGJ) allows the
definition of a list that is both ownership and type generic
as follows:

class List<X, Owner extends World> {

Link<X, This> next;

X get (int i) {...}

void set (X x) {...}

...

}

First, note that this code sample, although of an OGJ pro-
gram, is syntactically correct Java code: OGJ is a strict
subset of Java, every OGJ program is a Java program. The
parameter X abstracts both the list items’ type (as in the
generic example) and the items’ ownership (as in the own-
ership type system). All classes also have an additional pri-
mary ownership parameter (as in ownership types, but now
declared last), but that parameter is now just a generic type
parameter (Owner extends World is a perfectly valid Java
declaration, given an abstract library class World). OGJ
also requires some basic well-formedness conditions: owner-
ship must be invariant over subclassing/subtyping, and the
ownership of additional generic parameters must be outside
a type’s primary owner — these conditions can in princi-
ple be captured via standard generic type bounds. OGJ
thus brings ownership types and conventional generic types
much closer together.

The OGJ design subsumes only one of the two language
constructs required for ownership — ownership parameter-
isation is subsumed by generic type parameters. In fact,
Potanin et al [22] show that generic type parameterisation as
found for example in FGJ or Java [15] is sufficient to model
ownership in static domains, i.e. confined types. OGJ still
requires the second language construct, the This owner, to
enforce per-instance object ownership, and also the support-
ing special purpose machinery in the type system to give the
This owner the correct semantics.

2Here ⊥ represents the bottom context, not the bottom
type.

In the remainder of this paper, we will argue that an un-
derlying type system with wildcards is strong enough to en-
code all of OGJ — and thus all object ownership — without
any additional, special purpose type system mechanisms.

3. OGJ WITH WILDCARDS
Our main contribution is to eliminate the special treat-

ment of the This context in OGJ [24]. We first handle
the purely descriptive function of ownership types, and then
in Sect. 3.2 describe how owners-as-dominators can be en-
forced. We eliminate the special treatment of the This con-
text by making it a formal parameter of each class, similar
to the Owner parameter already present in OGJ. Since This

is always assumed to be inside Owner, it is specified by us-
ing Owner as the upper bound. Therefore, class declarations
have the form

class C<X0,...,Xn, Owner, This extends Owner>

. To ensure the correct behaviour of This, it must always
be instantiated with an unbounded wildcard, for example:
C<T0,...,Tn, World, ?> (where T0,...,Tn are types, and
instantiations of C will be owned by the root context, World).

Instantiating This with a wildcard does not have to be
enforced to ensure soundness of the type system or correct-
ness of the ownership hierarchy. However, if This can be
instantiated by a non-wildcard type, then the behaviour of
ownership types is not mimicked correctly: the This context
is not associated with instances of the declaring class, and
therefore contexts do not correspond with objects.

Other than the above innovation, OGJ with wildcards
mostly follows OGJ3; the most important feature of which is
the conflation of type and context parameters. For example,
we could define a linked list in OGJ with Wildcards as:

class List<X, Owner extends World,

This extends Owner> {

Link<X, This, ?> next;

X get (int i) {...}

void set (X x) {...}

...

}

where X is the type of objects in the list. For example, we can
instantiate this list as List<Book<World, ?>, This, ?>,
which represents a list of books, where the books are owned
by the root context and the list itself is owned by the current
context. We can also define lists with unknown owners, for
example List<Book<?, ?>, This, ?> (a list of books whose
owners are unknown) or List<Book<World, ?>, ?, ?> (a
list of books whose owners are all World, but where the
owner of the list is unknown). We can also express uncer-
tainty about the types of objects in the list, for example,
List<?, This, ?> (a list of unknown objects). Note that
the final“This” formal parameter is always instantiated with
a plain unbounded wildcard “?”.
This can be used as an owner within a class, but cannot

be concretely named outside that class, therefore, objects
are confined to the part of the ownership hierarchy corre-
sponding to their owner’s context. For example:

3We simplify OGJ by not supporting its confinement as-
pects; we make further simplifications in the formalism, de-
scribed in the next section.

class C<Owner extends World, This extends Owner> {

C<This, ?> f1; //field in C’s representation

C<?, ?> f2; //field in some context

public void m(C<World, ?> x, C<This, ?> y) {

x.f2 = y.f1;

//1 OK: owner abstracted

x.f1 = y.f1;

//2 error: violates topology

x.f1 = y;

//3 error: violates topology

}

}

In this example, f1 is in the representation of C, indicated
by its owner, This. The intention is that ownership types
prevent objects in different contexts being mixed, thus dis-
respecting the ownership hierarchy.

At this stage we are not enforcing an encapsulation prop-
erty, so we can read x.f1 and store a reference to it by
abstracting its owner with a wildcard (expression 1): after
capture conversion, x.f1 will have type C<Z, ?>, where Z is
fresh; this type is a subtype of C<?, ?>.

In expression 2, x.f1 and y.f1 are instantiations of C,
but they are incompatible, because they describe objects
which may be in different contexts. The types of x and y

will be capture converted to C<World, Z>, where Z is a fresh
variable in each case. Therefore x.f1 and y.f1 have types
(within the scope of the assignment expression) C<Z1, ?>

and C<Z2, ?>, which are incompatible.
Similarly, we can not assign y (owned by the current con-

text, This) into x.f1 (owned by x), because C<This, ?> is
not a subtype of C<Z, ?>, where Z is, again, fresh.

3.1 Some details

Bounds. The formal parameter This must be bounded
by Owner to reflect the ownership hierarchy. Owner must
be bounded by World to ensure that it represents a context
and not a type. When a type is instantiated, the wildcard
corresponding to This will inherit the bound from the class
declaration, and so will be bounded above by the actual
parameter corresponding to Owner. The This wildcard must
not be given a lower bound, to ensure that the types do not
incorrectly reflect that an object’s context overlaps another
context.

Object creation. In Java, new cannot be used to create
objects with wildcard type: for example,

C<World, ? > x = new C<World, ?>()

is illegal. When an object is created, we must use a concrete
type to stand for This. The actual Owner parameter can be
used for this, in this example,

C<World, ? > x = new C<World, World>()

This is legal because there is no context between the This

and Owner contexts in the ownership hierarchy; therefore
any property of the Owner context’s position in the hierarchy
also applies to the This context. The new expression must
be given the more abstract type with the This parameter
hidden by a wildcard immediately. Unfortunately, this must

be enforced by the programmer or in the type system, a
preprocessor step could allow unsoundness4.

3.2 Encapsulation
We can enforce owners-as-dominators in OGJ with wild-

cards by enforcing a few extra constraints. We require the
standard constraint that an object’s owner is inside all of
its other actual context parameters; in OGJ with wildcards,
this means that the owner must be a subtype of the con-
text parameters. We also require that all wildcards, ex-
cept those in the This position, are given a lower bound.
This prevents an object’s owner being directly or indirectly
abstracted which would allow violations of the owners-as-
dominators property.

We return to the example given above to illustrate the
changes to the system:

class C<Owner extends World, This extends Owner> {

C<This, ?> f1; //field in C’s representation

C<?, ?> f2; //now illegal

public void m(C<World, ?> x, C<This, ?> y) {

x.f2 = y.f1;

//1 error: violates o-as-d

x.f1 = y.f1;

//2 error: violates topology

x.f1 = y;

//3 error: violates topology

}

}

Expressions 2 and 3, which caused errors in the descrip-
tive system, still cause errors when enforcing owners-as-
dominators. The declaration of field f2 is now illegal because
the wildcard in owner position is unbounded. This prevents
abstraction of an object’s owner, and so expressions such as
expression 1 cannot be written. Note that there is no type
error in expression 1, it is the ill-formed type of f2 which
causes an error in type checking. Executing expression 1

would violate owners-as-dominators because x, which is in
the World context, would hold a reference to an object in
y’s representation (y.f1); this reference would allow for a
reference chain to y.f1 which is not dominated by y.

The constraints needed to enforce owners-as-dominators
cannot be enforced by a pre-processing step, since they must
be applied to types at intermediate stages of type checking.
However, it would be a fairly simple modification to the type
checker to include these extra well-formedness checks.

4This could be avoided by enforcing a slightly clunky
encoding of object creation which makes use of wildcard
capture. For example, to encode new C<World, ?>(), we
add the following methods to class C:
private static <O, X> C<O, X> createAux
xxxx(ArrayList<O> d1, ArrayList<X> d2)
xx{ return new C<O, X>(); }
public static <O> C<O, ?> create(ArrayList<?>
dummy)
xx{ return createAux(new ArrayList<O>(), dummy); }
We replace the constructor call with
C.<World>create(null). The ArrayLists are used only
to pass around type parameters, in the call to createAux
we must provide both type parameters or neither, since we
must infer one, we can provie neither.

4. WOGJ
We formalise the concepts described in the previous sec-

tion in a simple model for Java with wildcards, WOGJ. This
is a simplification of Tame FJ [8], extended with imperative
features and the simple well-formedness constraints needed
to support ownership types and the owners-as-dominators
property.

WOGJ also simplifies Tame FJ [8], it does not support
type parameterisation of methods and thus does not sup-
port type inference of type parameters at method call sites5;
in terms of the formal system, this means that the type
rule for method invocation is simpler and that there is no
need for the match and sift relations of Tame FJ. Further-
more, WOGJ does not separate the subtyping relation, nor
does our rule for well-formed environments include a premise
which uses these subtype relations; therefore, WOGJ as pre-
sented probably cannot be proved sound. However, sound-
ness can (probably) be proved by restoring these features of
Tame FJ. WOGJ is also a simplification with respect to OGJ
[24]: we do not support the confinement properties of OGJ,
nor placeholder parameters (which are used in our informal
description), nor manifest classes.

Ownership types structure the heap, therefore in order
to be interesting, WOGJ must support a heap and other
imperative features. To this end, we extend Tame FJ with a
heap, field assignment, and rules to deal with the semantics
of addresses, null, and errors due to null.

Ownership is essentially supported in WOGJ by adding
the coding patterns described in the previous section to the
well-formedness rules and syntax. The rule for well-typed
classes is modified so that these changes can be assumed
when type checking the body of a class.

4.1 Syntax
The syntax of WOGJ is given in Fig. 1, runtime enti-

ties are surrounded by a grey box . The syntax for expres-

sions and types is mostly standard and follows Tame FJ
and FJ-like calculi with assignment, e.g., OGJ [24] or Jo∃
[7]. As with these systems, we will elide empty quantifying
environments and type parameter lists, e.g., we use C as a
shorthand for ∃∅.C<∅>. Class types are extended with the
distinguished class World, all types that represent contexts
in the ownership hierarchy must inherit from World. Types
are also extended with Thisι, which is only used in the op-
erational semantics to associate a type parameter with the
This context. No corresponding change to the Java runtime
system would be required since type parameters are erased
[15]. Class types are forced to take at least two actual type
parameters to represent the Owner and This contexts; the
corresponding formal parameters have distinguished names
and, in the case of This, a syntactically fixed bound. Follow-
ing OGJ, we separate type variables which represent formal
contexts (O) from those which represent types (X). This is
merely a convenience (only used in T-Class in Fig. 8) and
this distinction is not essential; the two can be distinguished
without this distinction since the bound of an O extends
World whereas the bound of an X extends Object. Where it
is clear from the context, we will assume that the syntactic
category X includes O.

In the following figures, we use a grey box to highlight

parts of rules which are used to support ownership in WOGJ.

5Note that we do support capture conversion of receivers.

4.2 Operational Semantics
The interesting operational semantics rules are given in

Fig. 2; rules for congruence, null, and error propagation are
in the appendix. The rules for field access and assignment,
and method invocation are standard: addresses are looked
up in the heap and a result calculated by looking up the value
in the field or method body, and in the case of assignment,
updating the heap.

R-New creates a new object record in the heap at a fresh
address, all fields are initialised to null and can be set by
field assignment. The interesting detail is that the type in
the heap is not identical to the type being instantiated: the
special type Thisι is used in the heap; it is unique for each
address. We do this to ensure soundness by ensuring an
object’s This context is always abstracted, whilst avoiding
instantiating wildcard types, which is illegal in Java. This
type represents the representation of an object. As we will
see shortly, a similar transformation takes place in the type
rule for object creation.

4.3 Auxiliary Functions
The auxiliary functions in WOGJ (given in Fig. 3) are

used to find the owner for a given type or address. An
owner is represented as a type which is a subtype of World.
To find the owner of an object in the heap (ownerH(ι)), the
object’s address is looked up in the heap. The object record
in the heap includes the object’s type (which will be a class
type) and the actual type parameter in the owner position
is returned.

The owner of a type (owner∆(T)) is found for class types
by taking the actual type parameter in the owner position.
The operation is complicated by existential quantification:
if the type parameter is quantified then we must find (using
glb) a transitive lower bound of this type parameter which is
not quantified. The definition of owner follows Jo∃ [7] and
ensures that owner is downwardly conservative, i.e., owner
may give a context which is inside the precise owner, but
never one which is outside.

4.4 Subtyping
Subtyping is defined in Fig. 4 and follows Tame FJ [8]

(without the division into subclassing etc.). Most rules are
standard; the only interesting rule is S-Env, which gives
subtyping between existential types (which model wildcard
types). The intuition is that the subtype will have more pre-
cise type parameters than the supertype: either an unquan-
tified variable within the bounds of the corresponding quan-
tified variable on the right hand side, or a quantified vari-
able with more restrictive bounds. For example, C<A> and
∃X→[⊥ A].C<X> are subtypes of ∃X→[⊥ Object].C<X>.

4.5 Well-formedness
Well-formedness of types and environments is defined in

Fig. 5, again, these rules mostly follow Tame FJ. One struc-
tural difference is that we merge the rules for well-formed
existential types and class types. This is done so that the
rule can be aware which type parameters are existentially
quantified. The added premises in the rules for well-formed
types ensure that the type parameter in the This position is
quantified and has no lower bound, that all other parameters
are either unquantified or bounded below, and that any type
parameters which represent contexts are outside the owner
context.

e ::= null | x | e.f | e.f = e | e.m(e) | new N expressions

Q ::= class C<O¢ T,X¢ T, Owner ¢ T, This ¢ ∃∅.Owner> ¢ N {T f; M} class declarations
M ::= <X¢ T> T m(T x) {return e;} method declarations

v ::= ι | null | err values

N ::= C<T, TOwner, TThis> | Object<TOwner, TThis> | World<> class types
R ::= N | X non-existential types

T, U ::= ∃∆.N | ∃∅.X | ∃∅.Thisι types

∆ ::= X→[Bl Bu] type environments
γ ::= x | ι | null vars and addresses
Γ ::= γ:T var environments

H ::= ι →{N; f→v} heaps

Γ ::= x:T variable environments
B ::= T | ⊥ bounds

x variables
C classes
X, Y type variables
O, Owner, This type variables (owners)
ι addresses

Figure 1: Syntax of WOGJ; runtime entities are in grey .

Computation rules: e;H ; e;H
H(ι) = {R; f→v}
ι.fi;H ; vi;H

(R-Field)

H(ι) = {R; f→v} H′ = H[ι 7→ {R; f→v[fi 7→ v]}]
ι.fi = v;H ; v;H′

(R-Assign)

H(ι) undefined fields(C) = f

H′ = H, ι → {C<T, Thisι >; f→null}
new C<T, TThis>;H ; ι;H′

(R-New)

H(ι) = {R; ...}
mBody(m, R) = (x; e)

ι.m(v);H ; [v/x, ι/this]e;H
(R-Invk)

Figure 2: WOGJ reduction rules.

Auxiliary Functions: ownerH(ι) = T owner∆(T) = T

H(ι) = {C<T, TOwner, Thisι> ...}

ownerH(ι) = TOwner

B 6∈ dom(∆)

glb∆(B) = B

∆(X) = [Bl Bu]

glb∆(X) = glb∆(Bl)

∆ ` X <: ∃∅.World<>
owner∆(X) = X

∆ ` X <: ∃∆′.Object<TOwner, TThis>

owner∆(X) = glb∆′(TOwner)

∆(Thisι) = [⊥ T]

owner∆(Thisι) = T owner∆(∃∆′.C<T, TOwner, TThis>) = ∃∆′.glb∆′(TOwner)

owner∆(∃∅.World<>) = ∃∅.World<>

Figure 3: Auxiliary functions for WOGJ.

class C<X¢ Tu> ¢ N {...}

∆ ` ∃∆′.C<T> <: ∃∆′.[T/X]N
(S-Sub-Class)

∆ `⊥<: B
(S-Bottom)

∆ ` B <: B
(S-Reflex)

∆ ` B <: B′′

∆ ` B′′ <: B′

∆ ` B <: B′

(S-Trans)

dom(∆′) ∩ fv(∃X→[Bl Bu].N) = ∅ fv(T) ⊆ dom(∆, ∆′)

∆, ∆′ ` [T/X]Bl <: T ∆, ∆′ ` T <: [T/X]Bu

∆ ` ∃∆′.[T/X]N <: ∃X→[Bl Bu].N

(XS-Env)

∆(X) = [Bl Bu]

∆ ` ∃∅.X <: Bu

∆ ` Bl <: ∃∅.X
(S-Bound)

Figure 4: WOGJ subtyping.

Well-formed types: ∆ ` B ok, ∆ ` P ok, ∆ ` R ok

X ∈ ∆

∆ ` X ok
(F-Var)

∆ `⊥ ok
(F-Bottom)

∆ ` ∃∅.World<> ok
(F-World)

TOwner ∈ dom(∆′) ⇒ ∆′(TOwner) = [T B]

∆′(TThis) = [⊥ B′]

∆ ` ∃∆′.Object<Towner, TThis> ok
(F-Object)

∆ ` ∆′ ok class C<X¢ Tu> ¢ N {...} ∆, ∆′ ` T ok ∆, ∆′ ` T <: [T/X]Tu |T| = n

Tn−2 ∈ dom(∆′) ⇒ ∆′(Tn−2) = [T B] Tn−1 = ∃∅.Thisι ∨∆′(Tn−1) = [⊥ B′]

∀Ti ∈ T0...Tn−3 : ∆, ∆′ ` Tn−2 <: owner∆,∆′(Ti)

∆ ` ∃∆′.C<T> ok
(F-Exist-Class)

Well-formed type environments: ∆ ` ∆ ok

∆ ` ∅ ok
(F-Env-Empty)

∆, X→[Bl Bu], ∆
′ ` Bl ok ∆, X→[Bl Bu], ∆

′ ` Bu ok
∆ ` Bl <: Bu ∆, X→[Bl Bu] ` ∆′ ok

∆ ` X→[Bl Bu], ∆
′ ok

(F-Env)

Figure 5: WOGJ well-formed types and type environments.

Well-formed environments ensure that all bounds are well-
formed and that the lower bound is a subtype of the upper
bound6.

4.6 Type Checking
Type checking is defined by the rules in Fig. 6; they are

mostly standard. Following Tame FJ, we use bounding envi-
ronments to ensure that any unpacked type variables are re-
packed or eliminated by subtyping. We elide a full descrip-
tion here, since the type rules are almost identical to Tame
FJ. In Fig. 7 we give an example of field access (x.datum
where x is an instance of List<?¢ Book<World>, World, ?>7)
to give an idea of their operation.

The rule for object creation is a little unusual: the expres-
sion is not assigned the type which is actually written. For
example, new C<A, B, C> has type ∃X→[⊥ B].C<A, B, X>.
This ensures that all types in the system are well-formed
(which requires that the This context is instantiated with

6Unfortunately this sanity check is not strong enough to
prevent spurious assumptions being used to derive unsound
subtypes. For this we require a stronger constraint which is
defined using the subclassing relation of Tame FJ [8].
7Note that this type isn’t well-formed because the first wild-
card does not have a lower bound, however, this is only a
concern if we wish to enforce owners-as-dominators.

a wildcard, represented as an existentially quantified vari-
able). In ownership terms, the rule ensures that the owner
of values in an object’s representation can never be named
outside of that object.

Our treatment of object creation is sound because the
given type parameter (TThis) is never used, and the type
rule corresponds to the operational semantics for object cre-
ation described in Sect. 4.2. Because the Thisι parameter
used in the object record in the heap is always considered to
be inside the current object’s actual owner (B in the above
example, see Fig. 9), the synthesised type is always a super-
type of the object’s type in the heap (by S-Env).

Type rules for methods and classes are given in Fig. 8.
Again, these are mostly standard; the only differences here
are in T-Class. The added premises ensure invariance of
Owner and This with respect to inheritance, and that the
bound on the owner parameter represents a context. To cre-
ate a type environment to type check the body of the class,
type parameters (X), Owner, and This are treated as stan-
dard parameters, and type parameters representing contexts
(O) are given the lower bound Owner8. These lower bounds
reflect F-Class, which enforces that all actual contexts are

8This use of bounds means that they must be put at the end
of the type environment to prevent a forward reference.

Expression typing: ∆;Γ ` e : T |∆

∆ ` T ok

∆;Γ ` null : T | ∅
(T-Null)

∆;Γ ` γ : Γ(γ) | ∅
(T-Var)

Tnew = ∃X→[⊥ TOwner].C<T, TOwner, X>

∆ ` Tnew ok

∆;Γ ` new C<T, TOwner, TThis> : Tnew | ∅
(T-New)

∆;Γ ` e : ∃∆′.N | ∅
fType(f, N) = T

∆;Γ ` e.f : T |∆′

(T-Field)

∆;Γ ` e : ∃∆′.N | ∅ fType(f, N) = T

∆;Γ ` e′ : T′ | ∅ ∆, ∆′ ` T′ <: T

∆;Γ ` e.f = e′ : T′ |∆′

(T-Assign)

∆;Γ ` e : ∃∆′.N | ∅ mType(m, N) = U→ U

∆;Γ ` e : U′ | ∅ ∆, ∆′ ` U′ <: U

∆;Γ ` e.m(e) : [T/Y]U |∆′

(T-Invk)

∆;Γ ` e : U |∆′ ∆, ∆′ ` U <: T
∆ ` ∆′ ok ∆ ` T ok

∆;Γ ` e : T | ∅
(T-Subs)

Figure 6: WOGJ expression typing rules.

∅; Γ ` x : ∃X→[⊥ Book<World>],Y→[⊥ World].List<X,World,Y> | ∅
fType(datum, List<X,World,Z>) = X

∅; Γ ` x.datum : X | X→[⊥ Book<World>]
(T-Field)

∅, X→[⊥ Book<World>] ` X <: Book<World>
∅ ` X→[⊥ Book<World>] ok

∅ ` Book<World> ok
∅; Γ ` x.datum : Book<World> | ∅

(T-Subs)

Figure 7: Example derivation.

Method typing: ∆ ` M ok in C

∆ ` T, T ok class C<X...> ¢ N {...}

∆; x:T, this:∃∅.C<X> ` e : T | ∅ override(m, N, T→ T)

∆ ` T m(T x) {return e} ok in C

(T-Method)

mType(m, N) = T→ T

override(m, N, T→ T)
(T-Override)

mType(m, N) undefined

override(m, N, T→ T)
(T-OverrideUndef)

Class typing: ` Q ok

∆ = X→[⊥ T′], Owner→[⊥ TO], This→[⊥ ∃∅.Owner], O→[∃∅.Owner T]

∅ ` ∆ ok ∆ ` N, T ok ∆ ` M ok in C

∆ ` N <: Object<Owner, This> ∆ ` TO <: ∃∅.World<>
` class C<O¢ T, X¢ T′, Owner¢ TO, This¢ ∃∅.Owner> ¢ N {T f; M} ok

(T-Class)

Figure 8: WOGJ class and method typing rules.

∀ι → {C<T, TOwner, Thisι>; f→v} ∈ H :

∆, Thisι → [⊥ TOwner] ` C<T> ok fType(f, C<T>) = T′ ∆;H ` v : T′ | ∅
∀v ∈ v : v 6= null⇒ v ∈ dom(H) ∧ ∆;H ` ∃∅.Thisι <: ownerH(v)

∆ ` H ok
(F-Heap)

∆ ` H ok
∀ι ∈ fv(e) : ι ∈ dom(H)

∆;H ` e ok
(F-Config)

Figure 9: WOGJ well-formed heaps and configurations.

outside the actual parameter in Owner position.

4.7 The Heap
Well-formed heaps and configurations are defined in Fig. 9.

F-Heap ensures that all types in the heap are well-formed,
all references refer to addresses which are in the heap and
which have types corresponding with the references, and
that the heap satisfies owners-as-dominators.

Owners-as-dominators is specified by ensuring that the
unique type Thisι is a subtype of the owner of all values
referenced by ι; which ensures that ι is inside the owner of
these references within the ownership hierarchy.

Methods and field lookup functions, and rules for using
the heap as a variable environment are mostly standard and
have been relegated to the appendix. The only interest-
ing point is that, when using the heap as an environment,
for each location, ι, in the heap, we add the assumption
Thisι →[⊥ TOwner] to the type environment, where TOwner

is the actual type parameter in the owner position of ι’s type.
Therefore, we can always assume the expected relation be-
tween an object and its owner. Adding this assumption to
the environment is only required to prove that WOGJ satis-
fies owners-as-dominators, and, due to type erasure, would
not need to be reflected at runtime in an implementation.

4.8 Properties
The relevant properties for WOGJ are type safety (to be

shown in the usual way by progress and preservation theo-
rems) and owners-as-dominators (proved as part of preser-
vation). We suspect that these will both hold with some
insubstantial changes to the calculus, but cannot be sure as
we have not yet attempted proofs. We believe the proof for
type soundness will follow those of Tame FJ [8] and Jo∃ [7],
and for owners-as-dominators of Jo∃ and OGJ [24].

Conjecture — Progress For any ∆, H, e, T,
if ∅;H ` e : T |∆ then either there exists e′ and
H′ where H; e ; H′; e′ or there exists v where
e = v.

Conjecture — Preservation For any H, H′,
e, e′, T, if ∅;H ` e : T | ∅ and H; e ; H′; e′ then
∅;H ` e′ : T | ∅
Conjecture — Owners-as-dominators For
any ∆,H, if ∆ ` H ok then ∀ι → {N; {f→ v}} ∈
H, ∀vi ∈ v : vi 6= null ⇒ ∆;H ` Thisι <:
ownerH(vi).

Most ownership languages, including OGJ, forbid setting
fields in an object’s representation to null. This is a sensi-
ble feature of encapsulation, but is not strictly required to
satisfy owner-as-dominators. This property is not supported
in WOGJ, since it does not emerge naturally from the use
of wildcards, but could be enforced by restricting the types
which null can assume in T-Null.

5. CONCLUSION AND FUTURE WORK
In this paper we have shown how generics, wildcards,

and a simple, syntactic well-formedness constraint can be
used to implement ownership. With some very small ad-
ditions to the rules for well-formed types (which does not
affect the typing rules, and which uses type information
provided strictly by the Java type system) we can enforce

the owners-as-dominators encapsulation property. We have
demonstrated that ownership types and their required be-
haviour can be represented by Java types.

Future Work. We are working on a full formalisation in
the style of Tame FJ, and a soundness proof for this system.
We are also investigating adding wildcards to the implemen-
tation of OGJ. There seems little benefit in implementing
the extra checking that would enable ownership to be en-
forced in Java, since native ownership — perhaps in the
style of OGJ — is much easier to use. In the longer term,
we are interested in how the observations of this work could
improve foundational models for ownership systems.

Acknowledgements. We would like to thank Alex Potanin
for helping us to better understand the intricacies of the
OGJ type system, and the anonymous reviewers for their
useful comments. The first author’s work was funded by a
Build IT Postodoctoral fellowship.

6. REFERENCES
[1] Jonathan Aldrich and Craig Chambers. Ownership

Domains: Separating Aliasing Policy from Mechanism.
In ECOOP, 2004.

[2] Jonathan Aldrich, Valentin Kostadinov, and Craig
Chambers. Alias Annotations for Program
Understanding. In OOPSLA, 2002.

[3] Austin Armbruster, Jason Baker, Antonio Cunei,
Chapman Flack, David Holmes, Filip Pizlo, Edward
Pla, Marek Prochazka, and Jan Vitek. A Real-Time
Java Virtual Machine with Applications in Avionics.
Transactions on Embedded Computing Systems,
7(1):1–49, 2007.

[4] Chandrasekhar Boyapati, Robert Lee, and Martin C.
Rinard. Ownership Types for Safe Programming:
Preventing Data Races and Deadlocks. In OOPSLA,
2002.

[5] Chandrasekhar Boyapati, Barbara Liskov, and Liuba
Shrira. Ownership Types for Object Encapsulation. In
Principles of Programming Languages (POPL), 2003.

[6] Chandrasekhar Boyapati and Martin Rinard. A
Parameterized Type System for Race-free Java
Programs. In OOPSLA, 2001.

[7] Nicholas Cameron and Sophia Drossopoulou.
Existential Quantification for Variant Ownership. In
European Symposium on Programming Languages and
Systems (ESOP), 2009.

[8] Nicholas Cameron, Sophia Drossopoulou, and Erik
Ernst. A Model for Java with Wildcards. In ECOOP,
2008.

[9] Nicholas Cameron, Sophia Drossopoulou, James
Noble, and Matthew Smith. Multiple Ownership. In
OOPSLA, 2007.

[10] David Clarke. Object Ownership and Containment.
PhD thesis, School of Computer Science and
Engineering, The University of New South Wales,
Sydney, Australia, 2001.

[11] David Clarke, Michael Richmond, and James Noble.
Saving the world from bad beans: deployment-time
confinement checking. In OOPSLA, pages 374–387,
2003.

[12] David G. Clarke, John M. Potter, and James Noble.

Ownership Types for Flexible Alias Protection. In
OOPSLA, 1998.

[13] David Cunningham, Werner Dietl, Sophia
Drossopoulou, Adrian Francalanza, Peter Müller, and
Alex Summers. Universe Types for Topology and
Encapsulation. In Formal Methods for Components
and Objects (FMCO), 2008.

[14] Werner Dietl, Sophia Drossopoulou, and Peter Müller.
Generic Universe Types. In ECOOP, 2007.

[15] Atsushi Igarashi, Benjamin C. Pierce, and Philip
Wadler. Featherweight Java: a Minimal Core Calculus
For Java and GJ. ACM Trans. Program. Lang. Syst.,
23(3):396–450, 2001. An earlier version of this work
appeared at OOPSLA’99.

[16] Atsushi Igarashi and Mirko Viroli. Variant Parametric
Types: A Flexible Subtyping Scheme for Generics.
Transactions on Programming Languages and
Systems, 28(5):795–847, 2006.

[17] Neel Krishnaswami and Jonathan Aldrich.
Permission-Based Ownership: Encapsulating State in
Higher-Order Typed Languages. In Programming
Language Design and Implementation (PLDI), 2005.

[18] Yi Lu and John Potter. On Ownership and
Accessibility. In ECOOP, 2006.

[19] Mads Torgersen and Erik Ernst and Christian Plesner
Hansen. Wild FJ. In Foundations of Object-Oriented
Languages (FOOL), 2005.

[20] P. Müller and A. Poetzsch-Heffter. Universes: A Type
System for Controlling Representation Exposure. In
Programming Languages and Fundamentals of
Programming, 1999.

[21] James Noble, Jan Vitek, and John Potter. Flexible
Alias Protection. In ECOOP, 1998.

[22] Alex Potanin, James Noble, Dave Clarke, and Robert
Biddle. Featherweight Generic Ownership. In Formal
Techniques for Java-like Programs (FTfJP), 2005.

[23] Alex Potanin, James Noble, Dave Clarke, and Robert
Biddle. Featherweight generic confinement. J. Funct.
Program., 16(6), 2006.

[24] Alex Potanin, James Noble, Dave Clarke, and Robert
Biddle. Generic Ownership for Generic Java. In
OOPSLA, 2006.

[25] Mads Torgersen, Christian Plesner Hansen, Erik
Ernst, Peter von der Ahé, Gilad Bracha, and Neal
Gafter. Adding Wildcards to the Java Programming
Language. Journal of Object Technology, 3(11):97–116,
2004. Special issue: OOPS track at SAC 2004,
Nicosia/Cyprus.

[26] Jan Vitek and Boris Bokowski. Confined Types. In
OOPSLA, 1999.

[27] Tobias Wrigstad and Dave Clarke. Existential Owners
for Ownership Types. Journal of Object Technology,
6(4), 2007.

[28] Tobias Wrigstad, Filip Pizlo, Fadi Meawad, Lei Zhao,
and Jan Vitek. Loci: Simple thread-locality for Java.
In ECOOP, 2009. To Appear.

[29] Tian Zhao, Jason Baker, James Hunt, James Noble,
and Jan Vitek. Implicit ownership types for memory
management. Sci. Comput. Program., 71(3):213–241,
2008.

APPENDIX
A. ELIDED RULES

Congruence rules: e;H ; e;H
e;H ; e′;H′ e′ 6= err

e.f;H ; e′.f;H′
(RC-Field)

e1;H ; e′1;H′ e′1 6= err

ιe1.f = e2;H ; ιe′1.f = e;H′
(RC-Assign-1)

e′2;H ; e′2;H′ e′2 6= err

ι.f = e2;H ; ι.f = e′2;H′
(RC-Assign-2)

e;H ; e′;H′
e.m(e);H ; e′.m(e);H′

(RC-Invk-Recv)

ei;H ; e′i;H′ e′i 6= err

ι.m(v, ei, e);H ; ι.m(v, e′i, e);H′
(RC-Invk-Arg)

Null pointer exceptions: e;H ; err;H

null.f;H ; err;H
(R-Field-Null)

null.f = e;H ; err;H
(R-Assign-Null)

null.m(e);H ; err;H
(R-Invk-Null)

Error propogation: e;H ; err;H
e;H ; err;H′
e.f;H ; err;H′
(RC-Field-Err)

e1;H ; err;H′
e1.f = e2;H ; err;H′

(RC-Assign-Err-1)

e2;H ; err;H′
ι.f = e2;H ; err;H′
(RC-Assign-Err-2)

e;H ; err;H′
e.m(e);H ; err;H′

(RC-Invk-Recv-Err)

ei;H ; err;H′
ι.m(v, ei, e);H ; err;H′

(RC-Invk-Arg-Err)

Figure 10: WOGJ reduction rules for congruence, null, and error propagation.

Lookup Functions

fields(Object) = ∅

class C<X¢ Tu> ¢ D<...> {U f; M}

fields(D) = g

fields(C) = g, f

class C<X¢ Tu> ¢ N {U f; M} f 6∈ f

fType(f, C<T>) = fType(f, [T/X]N)

class C<X¢ Tu> ¢ N {U f; M}

fType(fi, C<T>) = [T/X]Ui

class C<X¢ Tu> ¢ N {U f; M} m 6∈ M

mBody(m, C<T>) = mBody(m, [T/X]N)

class C<X¢ Tu> ¢ N {U′ f; M}

U m(U x) {return e0;} ∈ M

mBody(m, C<T>) = (x; [T/X]e0)

class C<X¢ Tu> ¢ N {U f; M} m 6∈ M

mType(m, C<T>) = mType(m, [T/X]N)

class C<X¢ Tu> ¢ N {U′ f; M}

U m(U x) {return e0;} ∈ M

mType(m, C<T>) = [T/X](U→ U)

Figure 11: Method and field lookup functions for WOGJ.

H = ι →{C<T, TOwner, Thisι>; ...}

∆, Thisι →[⊥ TOwner] ` T <: T′

∆;H ` T <: T′

(H-S)

H = ι →{C<T, TOwner, Thisι>; ...}

∆, Thisι →[⊥ TOwner]; ι:R, Γ ` e : T |∆′

∆;H, Γ ` e : T |∆′

(H-T)

Figure 12: Using the heap as an environment in WOGJ.

