
Multiple Ownership

Nicholas R Cameron,
Sophia Drossopoulou

Department of Computing,
Imperial College London, UK
{ncameron, sd}@doc.ic.ac.uk

James Noble ∗

School of Mathematics, Statistics
& Computer Science,

Victoria University of Wellington,
New Zealand

kjx@mcs.vuw.ac.nz

Matthew J Smith

Department of Computing,
Imperial College London, UK

mjs198@doc.ic.ac.uk

Abstract

Existing ownership type systems require objects to have
precisely one primary owner, organizing the heap into
an ownership tree. Unfortunately, a tree structure is too
restrictive for many programs, and prevents many com-
mon design patterns where multiple objects interact.

Multiple Ownership is an ownership type system
where objects can have more than one owner, and the
resulting ownership structure forms a DAG. We give a
straightforward model for multiple ownership, focusing
in particular on how multiple ownership can support
a powerful effects system that determines when two
computations interfere — in spite of the DAG structure.

We present a core programming language MOJO,
Multiple Ownership for Java-like Objects, including a
type and effects system, and soundness proof. In com-
parison to other systems, MOJO imposes absolutely
no restrictions on pointers, modifications or programs’
structure, but in spite of this, MOJO’s effects can be
used to reason about or describe programs’ behaviour.

Categories and Subject Descriptors D.3.3 [Soft-
ware]: Programming Languages—Language Constructs
and Features

General Terms Languages, Theory

∗This work was developed while James Noble was on leave at
Imperial College London, and Microsoft Research, Cambridge.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

1. Introduction

We’re tired of trees... We should stop believ-
ing in trees, roots, and radicles.

Deleuze andGuattari, A Thousand Plateaus [17]

In ownership systems, each object has one owner and
the ownership relation forms a tree. While different
versions of ownership have proved effective for a variety
of tasks [2, 7, 8, 14, 18], empirical studies have shown
that this ownership structure does not suit all programs
[1, 6, 34, 43]. In this paper we present an ownership
type system that removes this restriction and does not
require the owners to be dominators, so that an object
may have multiple owners, and the ownership relation
forms a DAG. We make the following contributions:

• the objects in boxes model, a simple, straightfor-
ward model of object ownership based on sets of
objects, which describes the fundamental features of
single ownership, and generalises smoothly to multi-
ple ownership.

• a language design incorporating Multiple Ownership
into a Java-like language with Objects (MOJO).
MOJO’s novel constructs include multiple ownership
types, constraint declarations to indicate that two
boxes either intersect or are disjoint, and a restricted
form of existential ownership. Thus, existing owner-
ship type systems can support multiple ownership
via relatively small extensions.

• a formal definition for MOJO, including a type sys-
tem which we have proved sound.

• an effects system for MOJO that works with multiple
ownership, that again, we have proved sound.

The next section informally introduces our concep-
tual model of ownership, the language MOJO, and the
effects system. We then give a formal presentation of
the syntax, operational semantics, type and effects sys-
tem of MOJO, and its soundness. The paper concludes

Project 4

Task1

Task2

Task3

Project 3

4Task

Task5

Project 5

Task6

Task7

Worker 2 3WorkerWorker 1

Project 1 Project 2

Company

Figure 1. A Single Ownership Structure. Three Workers belong to the Company, each Worker is working on several
Projects, and and each Project has Tasks the Worker must complete.

with a discussion of MOJO idioms and extensions and
a brief survey of related work.

2. The Benefits of Putting Objects into
Boxes

In this section we present our conceptual model — the
“objects in boxes” model [19] — of multiple ownership
and effects in object-oriented systems. We begin by
modelling single ownership, then show how the objects
in boxes model generalises to multiple owners. Inter-
leaved with the conceptual presentation, we show how
these models can be described using ownership types in
programming languages. The examples are expressed in
our core language MOJO but would apply in most lan-
guages with ownership types.

Upon reflection, given that ownership has been stud-
ied for at least ten years [38], and alias control for
fifteen [25], it seems odd that only now we are pre-
senting something as näıve as a model based purely
on sets. Compared with previous work, the objects-
in-boxes model focuses on ownership sets (boxes), the
objects in the boxes, and the effects of computation,
and abstracts away from language constructs, types,
messages, capabilities, and especially the pointer struc-
tures that feature prominently in most other treatments
of object ownership [2, 12, 14, 35, 37]. While some of
these concerns must be reintroduced as we move from a
conceptual model to a programming language, we have
found the abstraction offered by the objects in boxes
model to be very useful in designing and reasoning
about ownership, and multiple ownership in particular.
Section 5.1 discusses how features of other ownership
systems can be reintroduced into our model.

2.1 Single Ownership

The object structure from figure 1 shows a company
that carries out a range of different Projects. Each
Project has one or more Workers allocated to it, and

each Worker has one or more Tasks they need to com-
plete.

The key relationship this diagram brings out is object
ownership: each Task is owned by a Project, and each
Project in turn is owned by the Worker responsible
for it. Ownership models abstraction, encapsulation and
aggregation: Tasks are part of their Projects; Workers
are part of the Company they work for. A change to
one of the parts — say a Project being cancelled —
necessarily affects the whole abstraction in which that
part is contained. Similarly, a change to a whole – say a
Worker going on leave — may change any of its subparts
— perhaps delaying all of the Tasks comprising its
Project.

Partitioning objects is key to ownership systems,
whether they use types [14] or specifications [36]. Differ-
ent systems have chosen different names for these par-
titions: islands [25], balloons [4], domains [2], contexts
[12], regions [22] — with each name being associated
with a particular detailed proposal.

We propose the neutral term boxes to describe these
partitions: in a sense, every ownership system “puts ob-
jects into boxes” and differs in the details of those boxes.
Figure 1 also gives a hint to the most fundamental se-
mantics of these boxes: a box is a set of objects. So,
for example, we could write [[Worker2]] to mean all the
objects contained within Worker2’s box. Here we have:

[[Project2]] = {Task3}
[[Project3]] = {Task4, Task5}

The first consequence of this model is that diagrams
such as Figure 1 (which have adorned almost every
ownership paper ever published) can now be ascribed
clear semantics: they are just the diagrams of sets we
are familiar with from primary school.

The second consequence of this model is that seman-
tics of object composition — box nesting — follows nat-

urally. So, for example, reading from the diagram:

[[Worker1]] = {Project1, Project2, Task1,
Task2, Task3}

[[Worker3]] = {Project5, Task6, Task7}

We also have the invariant that if x is inside o,
written x ¿ o, then x belongs to the box of o. In other
words:

x ¿ o ⇔ x ∈ [[o]] Objects in Boxes

An object’s box must be a subset of its owner’s box:

x ¿ o ⇒ [[x]] ⊆ [[o]] Box Nesting

And, in single ownership, the inside relation is a tree:

[[o1]] ∩ [[o2]] 6= ∅
⇒

[[o1]] ⊆ [[o2]] ∨ [[o2]] ⊆ [[o1]]
Single owners

These invariants should hold however we model
heaps, and also independently of whether objects are
permitted to change owner — type systems generally do
not support ownership change; specification languages
do.

2.1.1 Single Ownership Languages

In an ownership-aware programming or specification
language we could define these classes as follows. First,
the Task class contains two fields — straightforward
value types giving the tasks’s name and duration: the
single method delays a task by increasing its duration.

class Task<o> {

String name;

int time;

void delay() {time++;}

}

The Task class also has an ownership parameter o
that is a special form of type parameter (a phantom
type [24]) that records ownership information. The Task
class needs to be ownership parametric, because differ-
ent tasks will have different owners (e.g. in Figure 1,
Task1 is owned by Project1 while Task4 is owned
by Project3). Ownership parameters connect compile-
time static types to run-time dynamic boxes. An ob-
ject’s owner parameter in its type represents the box it
is inside:

x : C<o> ⇒ x ∈ [[o]] Owners as Boxes

In ownership type languages, actual ownership parame-
ters may be the formal parameters of the enclosing class

(including the distinguished first parameter represent-
ing an instance’s owner); “this” establishing that the
current “this” instance is the owner of the new type;
or final fields, establishing that the object contained in
the field is the owner.

The Project class is also ownership parametric.
Projects delay themselves by delaying every con-
stituent task.

class Project<o> {

TaskList<this,this> tasks;

void delay(){

for(var t : tasks) {t.delay();}}

}

The field tasks stores a list of the project’s tasks, and is
declared as TaskList<this,this>. This means that the
list of tasks pointed to by the field, and each Task stored
in the List, will be owned by this particular project
instance, and therefore will be inside the box belonging
to this Project instance, a member of the set [[this]],
which will be different for each different project. The
box nesting invariant ensures that an object’s box is
inside its owner. That is, this¿ o, and thus [[this]] ⊆
[[o]].

The Worker class is quite straightforward, keeping a
list of Projects owned by this Worker (i.e. inside its
box) and delaying itself by delaying those projects.

class Worker<o> {

ProjectList<this,this> projects;

void delay(){

for(var p : projects) {p.delay();}

}

}

Consider now the TaskList class (the ProjectList
class is similar) whose instances we omitted in Figure 1
for space reasons. Its implementation is rudimentary, as
our focus is the ownership types involved:

class TaskList<o, tO> {

Task<tO> t;

TaskList<o,tO> next; TaskList<o,tO> prev;

void add(Task<tO> tt){

if (next==nil) {

next=new TaskList<o, tO>();

next.t=tt;

next.prev = this;

}

else {

next.add(i);

}

}

Task<tO> get(int i){

return (i==0) ? item : next.get(i-1);

}

}

TaskList has two ownership parameters. The first,
o, is the “primary” owner parameter, just as in the other
classes we’ve seen. The second, tO, is the ownership
of the Task stored in each list node. In this way the
ownership of the node and its contents do not have
to be the same. The fields next and prev have type
TaskList<o, tO> saying that the adjacent list entries
have the same item ownership as this list entry, and the
same owner as this object: all entries in a single list will
be members of the same enclosing box; as will all the
tasks — although they may be in different boxes. This
differs from the fields in classes Project and Worker,
which have this ownership, meaning that they belong
to the box owned by the current object itself.

2.1.2 Effects within Single Ownership

Ownership can help determine the effects of a computa-
tion in terms of the objects read or written. Two com-
putations do not interfere (they do not write the same
objects, or do not read objects the other writes) if the
the boxes involved do not intersect.

Effects systems [13, 22, 33] annotate methods with
effects specifications, describing the boxes read or writ-
ten. In Task, the fields name and time hold simple types,
are local to the object, and can only be changed by
the object itself. The delay method makes just such
an assignment to time. The effects of, say, reading the
name field would be this / empty meaning reading the
“this” object and not writing anything. The effects of
the delay method would be this / this — reading
and writing the object to which the method is sent.

class Task<o> { ...

void delay() //effect: this/this

... }

class Project<o> {

TaskList<this,this> tasks;

void delay() //effect: this/this

{ for(var t : tasks) {t.delay();}

}

The Project’s delay method reads the tasks variable,
the fields of those subordinate Task objects, and calls
delay on them. From the effects of delay(), (reads
this, writes this) we know that it will write whatever
object it is called upon. The question is: which Task
objects will be written?

Effects systems without ownership [22, 30] cannot
easily distinguish which Task may be affected; effects
like “all.Task / all.Task” say that delay on any
project may read and write any Task. The upshot of
this is that delaying any project must be assumed to
delay every other project in the system.

This is precisely where boxes come to the rescue.
Looking again at Figure 1, only the Tasks in the
Project’s box are written. The type of these tasks,

i.e. Task <this> gives that information. We interpret
effects so that they apply to boxes, rather than objects:
effects such as .../this means that a computation may
write the “this” object itself, or any other object in its
box [[this]]. The effects for Project’s delay method
are this / this, so the method may read or write the
object itself or any other object that it owns, but may
not read or write any object outside its own box. The
Worker’s delay method also has effects this / this.

2.2 Multiple Ownership

Single ownership requires every object to have a sin-
gle direct owner, thus the ownership structure is a tree.
While easy to understand, easy to model, and (rela-
tively) easy to formalise and enforce, single ownership
is too restrictive for many kinds of programs. Empiri-
cal studies have shown that relationships between ob-
jects and between the classes that define them are scale
free networks — tangled graphs where every object is
only a few hops from every other object [34, 43]. Non-
hierarchial relationships cannot be modeled by trees. In
[34], a study of heaps (up to 1.4 GB), found that up to
75% of ownership structures require multiple (shared)
ownership, and up to 50% required “butterfly” struc-
tures. The need for multiple ownership has been inde-
pendently identified in investigations of large libraries
[1].

For example, imagine the following change to the
Projects, Workers, and Tasks model in figure 2. The
company has been restructured from an hierarchical
style, where every project is carried out by just one
worker, into a “matrix” management style where every
task is assigned to both a project and a worker. As
a result, tasks have to belong to both projects and
workers; delaying a project must delay all employees
who must work on tasks on that project, and similarly
delaying an employee will delay all projects with which
they are involved.

The topology in figure 2 cannot be described with ex-
isting ownership type systems. Classical ownership en-
forces a very strong owners-as-dominators policy over
pointers — all paths to an object must be via its owner
— so if programmers attempt to write programs de-
scribing this interconnected ownership structure, their
programs will be rejected as type-incorrect. Other sys-
tems support owners-as-modifiers or effective owner-
ship, rather than pointer control [35]; so they would at
least be able to pick one of either Projects or Workers
as a primary axis of organisation — say Projects— and
grant permission to Workers to have pointers into tasks
even though they belonged to projects. Unfortunately,
when a Worker is delayed in such a system, it would not
have permission to modify its Project objects because
it does not own them.

3WorkerWorker 21Worker

Task3 Task6

Task2

Task1 Task4 Task5 Task7

Task8

Task9

Project 1

2Project

Project 3

Company

Figure 2. A Multiple Ownership Structure. The Company now requires its Workers to work on many different
Projects— and different Tasks in a project can be carried out by different Workers.

In single ownership systems, programmers get around
these restrictions by “flattening” or “lifting” the own-
ership hierarchy: rather than nesting boxes, every task,
worker, and project can exist in one very large company
box, and use “peer” ownership — types like Task<o>
that refer to other objects in the same box as this,
rather than this’s box — to access every required ob-
ject directly. In both owners-as-dominators and owners-
as-modifiers systems, this would typecheck and allow
e.g. projects and workers to update their tasks: there is
no longer one primary “dominant” decomposition. The
problem with this design is that it loses any benefit
of ownership types: with everything in one large box,
we cannot distinguish between tasks belonging to one
project, or another project, or a worker. Once again,
a change to one task will be taken as a change to all
tasks.

This is where the interpretation of figure 2, mod-
elling boxes as sets, shows us the way out. Just as an
element can be a member of more than one set, an ob-
ject can be inside more than one box, that is, be owned
by more than one object. Where two boxes overlap, ob-
jects in their intersection are within both boxes, and
so have multiple owners. So all the Tasks belonging to
Project1, say, will still be inside Project1’s box —
[[Project1]]. Similarly, Tasks belonging to Worker2 will
be inside [[Worker2]]. And, crucially, Tasks (or any other
object) belonging to both Project1 and Worker2 (for
example, Task2 in figure 2) will reside in both boxes,
that is, in the intersection of the two sets: [[Project1]]∩
[[Worker2]]. This semantics follows directly from inter-
preting figure 2 as a set diagram.

The set interpretation generalises equally well to ef-
fects in a multiple ownership setting. Read or write ef-
fects upon an object with multiple owners must be taken

to be effects within the intersection of all the boxes to
which that object belongs — and if this intersection it-
self intersects the effects of another computation, then
those two computations potentially interfere.

2.2.1 MOJO: Language Support for Multiple
Ownership

We generalise a single-owner language to support mul-
tiple owners. Our core language, MOJO, is a relatively
simple extension to existing single-ownership languages
such as JOE and OGJ [2, 13, 42]; with the simplifica-
tion that we drop the requirement that owners should
be dominators. In the rest of this section we present the
various new features of MOJO based on the multiple-
ownership version of task management.

First, we reconsider the Task class. Surprisingly, this
is exactly the same as the single owner version. In
particular, Task retains just one ownership parameter
even though in the design — figure 2 — every Task
has multiple owners. In MOJO, multiple owners are
supplied upon class instantiation, rather than upon
declaration; therefore classes can be parametric in the
number of owners they will have1.

To instantiate objects with multiple owners, MOJO
supports a special ownership combinator that provides
multiple (intersection) ownership. The actual ownership
argument a & b describes multiple owners a and b: a sin-
gle formal argument is bound by multiple actual argu-
ments (similar to a type-generic system, where List<T>
instantiated by Pair<A,B> gives List<Pair<A,B>>, and
the formal argument T is instantiated with a pair of ar-
guments A and B). For example, we can declare a Task

1 This is an innovation of the current work; in our earlier work
[19] multiple class owners were provided upon class declaration.

object that will be owned by a Worker and a Project
object, both previously created:

final Project<this> prj = new Project<this>();

final Worker<this> wrk = new Worker<this>();

Task<prj & wrk> tsk = new Task<prj & wrk>();

The interpretation of a & b follows clearly from the
Objects in Boxes constraint. If an object x’s owner
is a & b then we can assume that there will exist a and
b, and x be inside both of them:

x ¿ a ∧ x ¿ b ⇒ x ∈ [[a]] ∩ [[b]]

or via the Owners as Boxes constraint:

x : C<a & b>⇒ x ∈ [[a]] ∩ [[b]]

The single ownership constraint Single Ownership
does not hold for multiple ownership. Thus

[[o1]] ∩ [[o2]] 6= ∅
6⇒

[[o1]] ⊆ [[o2]] ∨ [[o2]] ⊆ [[o1]]
Multiple owners

Returning to our example, the TaskList is slightly
modified compared to the single owner version

class TaskList<o, t0> {

Task<t0&?> t;

TaskList<o, t0> next;

void add(Task<t0 & ?> tt){ ... }

}

The owner of each task t is now t0 & ?, which says three
things: First, that the Tasks are inside more than one
box — they have multiple ownership. Second, that one
of those owners is t0, the second owner parameter of
the current TaskList object. And finally, that — at
this point in the program — we do not know what the
other owner(s) of each Task are.

The code for Project class is mostly unchanged,

class Project<o> {

TaskList<this, this> tasks;

void delay(){

for(var t : tasks) {t.delay();}

}

void add(Task<this & ?> t) {

tasks.add(t);

}

}

except for the ownership type used to declare the formal
parameter of the add method.

The ? wildcard (similar to Java’s “?” wildcard for
generics) can be thought of as an existential owner ;

these have become common in a range of ownership
type systems [18, 31, 50]. Wildcard owners are crucial
in a multiple ownership system because one owner often
does not, or cannot, know the other potential owners.
In our example, the TaskList knows that its second
owner parameter (t0) is one of the owners of the tasks,
but does not know who the other owners will be.

The Worker class is now symmetrical to the Project
class:

class Worker<o> {

TaskList<this, this> tasks;

void delay(){

for(var t : tasks) {t.delay();}

}

void add(Task<this & ?> t) {

tasks.add(t);

}

}

Task<p1 & w1> is a subtype of Task<p1 & ?> and of
Task<w1 & ?>. This allows us to add tasks owned by, say,
project p1 and worker w1 to both p1 and w1 as in the
following code (we discuss the meaning of intersects
in the following section):

final Project<this> p1 = new Project<this>();

final Worker<this> w1 = new Worker<this>();

w1 intersects p1

Task<p1 & w1> t1 = new Task<p1 & w1>();

p1.add(t1); w1.add(t1);

2.2.2 Effects within Multiple Ownership

Given the straightforward extension from single to mul-
tiple ownership promised by the objects in boxes model,
it is tempting to expect that effects would generalise
similarly; however, that is not quite the case.

In the following example we create two tasks, one
shared between project p1 and worker w1, the other
shared between p2 and worker w1:

class Test {

final Project<this> p1 = new Project<this>();

final Project<this> p2 = new Project<this>();

final Worker<this> w1 = new Worker<this>();

w1 intersects p1; w1 intersects p2

Task<p1 & w1> t1 = new Task<p1 & w1>();

p1.add(t1); w1.add(t1);

Task<p2 & w1> t2 = new Task<p2 & w1>();

p2.add(t2); w1.add(t2); }

In this program p1.delay() and w1.delay() poten-
tially interfere. Given our intuition from the figure 2,
we expect p1.delay() and p2.delay() not to inter-
fere. The expressions have effects:

p1.delay() : p1 / p1
p2.delay() : p2 / p2
w1.delay() : w1 / w1

and with the machinery we have got so far, we have
insufficient information to distinguish the relationship
between p1 and p2 from that between p1 and w1.

2.2.3 Intersection and Disjointness

To solve this problem we have to provide more informa-
tion about which boxes intersect, and which boxes are
disjoint. Instantiating types with multiple owners like
p1 & w1 creates objects in the set intersection [[p1]] ∩
[[w1]], which means that the p1 box and the w1 box
must intersect. Conversely, for disjoint boxes p1 and p2
(like in the figure) the multiple owner p1 & p2 is illegal.

We introduce two declarations that make box topolo-
gies explicit. In the example, we’d need to declare w1
intersects p1 and w1 intersects p2 if we want to
have workers whose tasks are in both p1 and p2. Simi-
larly, we need to declare p1 disjoint p2 to ensure the
p1 and p2 boxes are independent. Only one relation-
ship (intersects or disjoint) may be declared between
any two boxes: if no relationship is declared, then we
don’t know what the topology is and we make conser-
vative assumptions.

Then, multiple ownership like a & b is legal only if
it can be shown that a and b are legal, and that a
intersects b. In our example, p1 & w1 and w1 & p1 and
p2 & w1 are all legal (“&”, intersects and disjoint are
symmetric; intersects and “&” are reflexive; disjoint
is irreflexive) while p1 & p2 is not legal because p1 and
p2 are not declared as intersecting.

Effects are independent when we can show that their
boxes will be disjoint. For effects involving multiple
owners (like p2 & w1) it is enough to consider owners
pairwise, and to find one pair that is definitely disjoint:
in the example, p1 and p2 are declared to be disjoint,
so their intersection is empty, i.e. [[p1]] ∩ [[p2]] = ∅ =
[[p1 & w1]] ∩ [[p2 & w1]] = [[p1 & ?]] ∩ [[p2 & ?]]. Therefore
p1.delay() and p2.delay() cannot interfere. On the
other hand, because p1 intersects with w1, we are able
to create types like w1 & p1, while we cannot create
p1 & p2 — the effects [[w1 & ?]] and [[p1 & ?]] are not
independent; thus computations like w1.delay() and
p1.delay() may interfere.

2.2.4 Ownership Type Constraints

To make MOJO modular, we provide where clauses to
constrain owner parameters. Inside a class C with three
owner parameters, a, b, and o, we can create objects
with ownership a & o only if we are sure that a intersects
with o. We give this guarantee through a where clause:

class C<o, a, b> where a intersects o {

Object<a & o> f1; // legal

Object<a & b> f2; // illegal }

but then we can only instantiate C with ownership
parameters that are definitively known to intersect. In
the example in the previous section, C<w1,p1,p2> is
legal (because w1 intersects p2) while C<p1,p2,w1>
is illegal because p1 does not intersect p2.

Where clauses can also be used to express disjoint-
ness constraints — a declaration such as:

class D<o, e> where e disjoint o

{ // ... }

requires that the actual ownership parameters be dis-
joint. In the above example, D<p1,p2> is a legal owner-
ship type because p1 disjoint p2, but D<w1,p1> is
not, because those boxes are not disjoint. Note that
a disjointness constraint also prevents both parame-
ters being instantiated with the same actual ownership
type, because disjoint is irreflexive, so D<p1,p1> and
D<this,this> are also illegal.

In practice, we expect that many ownership pa-
rameters will use neither intersection nor disjointness
constraints. This gives maximal polymorphism: uncon-
strained parameters can be instantiated with either
intersecting or disjoint boxes. A class which does not
create objects with multiple owners will not need inter-
section constraints, and a class which is not susceptible
to interference between parameters will not need dis-
jointness constraints. Most collection classes, for exam-
ple, will fall into this category, as will pairs, tuples, and
many other generic classes.

3. MOJO

In this section we present the MOJO language, a mini-
mal object-oriented imperative language, in the Feath-
erweight Java (FJ) [26] style with extensions for (mul-
tiple) ownership. It is closely related to JOE [13] and
ODE [47].

The major change from FJ is that MOJO types
and classes are parameterised by a sequence of owner
parameters, the first of which is the owner of objects of
that type. Actual ownership parameters may consist of
multiple owners which may include the wildcard owner,
“?”. To support the topology of boxes described in
section 2.2.3, constraints on ownership parameters and
final fields may be specified.

MOJO supports imperative features, including a
heap and field assignment, and final fields that may be
used as ownership parameters (non-final fields would
be unsafe as ownership parameters as they may change
during execution).

The interesting features in MOJO are
• the support for multiple owners, through the opera-

tion ∩ which combines owners into a “multi-box”,
• support for annotations on class declarations, which

require disjointness, or allow intersection of owner-
ship parameters,

P ::= class∗ program

class ::= class c < p > pCnstr ¢ c′ < Q >

{ finfld fCnstr fld mth } class definition
C ::= ◦◦ | ◦◦ interesects or disjoints
pCnstr ::= p C p parameter constraints
finfld ::= fin t ff final field definition
fCnstr ::= ff Cff | ff Cp field constraints
fld ::= t f field definition
mth ::= t m (t x) { e } method body

t ::= c < Q > static type
path ::= this | x | ι | path.ff path
Q ::= q | q∩Q actual own. param. (poss. multiple)
q ::= path | ? | p one actual ownership parameter

R ::= r | r∩R runtime actual ownership parameters

r ::= ι | ? one runtime actual ownership parameter

e ::= x | this | e.f | | e.f =e
new t | e.m(e) | ι expressions

c, p ::= id class identif., form. ownership param.
f , ff , m ::= id field identif., final field identif., method identif.

Figure 3. Syntax, runtime entitites in grey .

• support for final fields, and annotations guaranteeing
the disjointness and allowing intersection of objects’
boxes,

• support for paths appearing as actual ownership
parameters in types.

MOJO does not require owners to be dominators,
and thus does not provide encapsulation guarantees.
The guarantees it provides have to do with the effects
of computations.

In comparison to the concrete, surface syntax de-
scribed in section 2.2.1, the formalism adopts a more
succinct abstract syntax: class declarations use ¢ in-
stead of extends. Constraints on fields or ownership
parameters use ◦◦ for intersects and ◦◦ for disjoint.
To emphasize the connection with set theory, multiple
owners use ∩ rather than &. Actual ownership param-
eters consist of a set of formal parameters, this, final
fields, method parameters, the ? wildcard or, at run-
time, addresses. The syntax is given in figure 3.

3.1 Runtime Model

Heaps (h) map addresses to objects. Objects are triples
of a runtime type, a mapping from final field identifiers
(Idffld) to addresses, and a mapping from non-final field
identifiers (Idfld) to addresses. Runtime types consist
of class identifiers and sequences of nonempty sets of
addresses, representing actual owners, including ?2

h ∈ Heap = N−→ Object address to object

2 Allowing ? gives meaning to the expression new Task<?,p>.
In MOJO, objects with unknown owners may be desirable, in
contrast to Java, where no object is instantiated with wildcard
types.

Object = c < R > × runtime type
(Idffld −→ N) × final fld. values
(Idfld −→ N) non-final fld. values

ι ∈ N object addresses

Note, that at runtime, types may mention paths, e.g.
c<ι4.ff 1 .ff 2>. We implicitly replace such paths by the
lookup of the values of the final fields in the heap, i.e. we
implicitly apply the following rule whenever required, in
order to obtain a c<R> out of a c<Q>.

h(ι)↓2(ff) = ι′

t =h [ι′/ι.ff]t

3.2 Subclasses, Field and Method Lookup
Functions

In figure 4 we define c <p> ¢ c′ <Q ′>, the subclass
relation. We can prove that the judgment c<p> ¢ ...
implies that the formal parameters of c are p, and that
for given classes c and c′, the c<p> ¢ c<Q ′> uniquely
determines the Q ′.

Lemma 1.
• c <p> ¢ c′< > implies that class c<p> ... in the

program.
• c <p> ¢ c<Q ′> and c <p> ¢ c′<Q ′′> implies

that Q ′′ = Q ′.

Based on the subclass relation, in figure 4 we then de-
fine the auxiliary field lookup function fTypeaux which
looks up field types as defined in a class, or as inherited
from superclasses. Similarly, we define for the auxiliary
method lookup functions mTypeaux and mBodyaux.

Subclasses

class c<p> ... ¢ c′<Q ′> { ... }
c<p> ¢ c<p>

class c <p> ... ¢ c′<Q ′> { ... }
c <p> ¢ c′<Q ′>

c<p> ¢ c′′< Q ′′ > c′′<p′′> ¢ c′< Q ′ >

c<p> ¢ c′< [Q ′′/p′′]Q ′ >

Field lookup

class c<p> ... ¢ ... { ...tf... }
fTypeaux(c<p>, f) = t

class c<p> ... ¢ ... c′< Q ′ >
fTypeaux(c′<p′>, f) = t

fTypeaux(c<p>, f) = [Q ′/p′]t

allF ields(c) = { f | fTypeaux(c<p>, f) is defined for some p}
finF ields(c) = allF ields(c) ∩ { ff | ff is final}

nonfinFields(c) = allF ields(c) ∩ { f | f is not final}

fType(c<Q>, f, e,Γ) = [Q/p](tΓ·e) where t = fTypeaux(c<p>, f)

tΓ·e =

8
<
:

t , if this /∈ t ;
[path/this]t if this∈ t , e is a path in Γ,
⊥, otherwise.

Method lookup

class c<p> ... ¢ ... { ...t m(t′ x){...}... }
mTypeaux(c<p>,m) = t′ → t

class c<p> ... ¢ ... c′< Q ′ >
mTypeaux(c′<p′>,m) = t′ → t

mTypeaux(c<p>,m) = [Q ′/p′]t′−> [Q ′/p′]t

class c<p> ... ¢ ... { ...t m(t′ x){ e }... }
mBodyaux(c<p>,m) = (x, e)

class c<p> ... ¢ c′< Q ′ > ...

mBodyaux(c<p>,m) = [Q ′/p′]mBodyaux(c′<p′>,m)

mBody(c<Q>,m) = [Q/p]mBodyaux(c<p>,m)

Figure 4. Subclasses, field, and method lookup functions.

v , h ; v , h

e, h ; ι, h ′

e.ff , h ; h ′(ι) ↓2 (ff), h ′
e, h ; ι, h ′

e.f , h ; h ′(ι) ↓3 (f), h ′

e, h ; ι, h ′′ e ′, h ′′ ; ι′, h ′

e.f = e ′, h ; ι′, h ′[ι 7→ (h ′(ι) ↓1, h ′(ι) ↓2, h ′(ι) ↓3 [f 7→ ι′])]

Figure 5. Operational semantics for field access and field assignment

Lemma 2.

• c<p> ¢ c′ <Q ′>, and fTypeaux(c′<p′>, f) = t

implies that fTypeaux(c<p>, f) = [Q ′/p′]t
• c<p> ¢ c′< Q ′ >, implies mTypeaux(c′<p′>, f) =

t′ → t, then mTypeaux(c <p >, m) = [Q ′/p′]t′ →
[Q ′/p′]t.

• If fTypeaux(t,) or mTypeaux(t,), or mBodyaux(t,)
is defined, then t = c <p> and class c<p> ... in
the program, for some c and p.

The functions allF ields, finF ields and nonfinF ields
return, respectively, the identifiers of all the fields of a

class, all final fields of a class, all non-final fields defined
in a class.

The function fType(c<Q>, f, e, Γ) returns the type
of field f as accessed from e, which has type c<Q>, in
an environment Γ. It first obtains the type of the field
as defined in class c (using the function fTypeaux, then
it replaces any occurrences of this, provided that e is
a path (using the operation tΓ·e), and then replaces the
formal owner parameters p by the actual owner param-
eters Q . For example, fType(Worker<o>, tasks, w, Γ) is
TaskList<w,w>3.

3.3 Execution

Execution is defined in terms of a large steps operational
semantics, with format e, h ; v , h ′, which maps an
expression and a heap to a result and a new heap.

The operational semantics for field assignment and
field access is the obvious one and appears in figure
5. The semantics of object creation and method call is
more intricate, and we discuss it here in more detail.

To create an object of type c <R >, we first create
a new object at a fresh address ι with temporary type
Object4. We then initialize the final fields ff 1 , ...ff n of c
and obtain objects ι, and a heap hn. We then initialize
the non-final fields f 1 ,...f m and obtain objects ι′, and a
heap h′m. Finally, in h′m we update the class of the new
object, and “connect” the final field identifiers to ι, and
the non-final field identifiers to ι′.

ι fresh in h h1 = h[ι 7→ (Object, ∅, ∅)]
finF ields(c<R>) = ff 1 , ...ff n

new fType(c<R>,ff i , ι, h), h i ; ιi, h i+1 i ∈ 1, ..n

h′1 = hn+1 nonfinF ields(c<R>) = f 1 , ...f m

new fType(c<R>, f i , ι, h), h
′
i ; ι′i, h

′
i+1 i ∈ 1, ..m

new c <R>, h ; ι, h′m[ι 7→ (c <R>,ff 7→ ι, f 7→ ι′)]

Method calls evaluate the receiver and the argument,
and look up the method body in the class as usual.
More interestingly, in e3, the method body, we replace
the formal receiver by the actual one (ι/this), and the
formal parameter by the actual one (ι′/x). The class’s
ownership parameters will have already been replaced
by the corresponding sets of owners in the object’s
runtime type (R/p) by the mBody function.

3 The order of the last two operations in the definition of fType is

crucial; if the order was reversed, then the [Q/p] could introduce
this into the type, which would be incorrectly replaced (free
variable capture) by the tΓ·e operation. For example, in:
class A<a>{ B<a> f; }
class C<c>{ final A<this> a1; ... a1.b ... }
the type of a1.b is B<this>. However, reversing the two operations
would give to a1.b the (wrong) type B<a1>.
4 We do not give the newly created object the class c<R>, in order
to avoid objects with uninitialized final fields. We give ι the type
c<R> only after the values for all new fields are available.

e1 , h ; ι, h ′′ e2 , h ′′ ; ι′′, h ′′′

h ′′′(ι) = (c <R>, ..., ...)
mBody(m, c<R>) = (x, e3)
[ι/this, ι′′/x]e3 , h ′′′ ; ι′, h ′

e1 .m(e2), h ; ι′, h ′

3.4 Well-formed types

In figure 6 we define the following five judgments:
Γ ` q ¿ q′ q guaranteed to be inside q′

Γ ` Q ◦◦Q ′ Q allowed to intersect Q ′

Γ ` Q ◦◦Q ′ Q guaranteed disjoint with Q ′

Γ ` Q Q consists of qs allowed to intersect

Γ ` c <Q> c <Q> well-formed type
An environment, Γ, maps this, x and ι to types,

and contains a set of formal ownership parameters (p)
and intersects and disjoints relationships declared in the
class of the receiver.

The operator ∩ is associative and commutative, and
the empty sequence ε is neutral, i.e. ε ∩Q = Q .

An object is inside another, if its box (that is, the set
of objects it owns) is a subset of the box of the other.

The relations ◦◦ and ◦◦ extend the declared intersec-
tions and disjointness of owner parameters and fields.
The disjoint relation makes use of the inside (¿)
relation for owner parameters.

A type c < Q > is well-formed in the context of
an environment Γ, iff: a) there is a Q for each formal
parameter p; b) each Q is well-formed (i.e. consists of
ownership parameters which are allowed to intersect);
and c) if two parameters are declared to intersect or be
disjoint in the class declaration, then the environment
Γ will allow the parameters to intersect or guarantee
them to be disjoint, respecively.

3.5 Subtypes

In figure 7 we define the subtype relation t ′ <: t which
is based on the subclass relationship. The auxiliary
judgment Q v Q ′ guarantees that Q ′ is the same as Q
except that some of the contents of Q may be replaced
by ?. Note that v is reflexive and transitive, but
not symmetric. We can easily prove that subtyping is
transitive.

For types c<Q> and c<Q ′>, if no ? appears in Q
or Q ′, subtyping is invariant with respect to the own-
ership parameters. For example, C <o1 ∩ o2> is not a
subtype of C <o1> — to allow such a relation would
be unsound. Similarly to Java Wildcards [11, 49], the
? owner introduces variance (with respect to ownership
parameters, as opposed to type parameters). However,
in MOJO, ? also denotes variance in the number of own-
ers. For example, as well as the obvious relationship
C <o><: C <?>, we also have C <o1 ∩ o2><: C <?>5.

5 Q ∩ ? v Q is not part of the subtyping rules, it is not sound
because it would allow us to ‘add variance’ to an invariant type.

Objects allowed to intersect, or guaranteed to be disjoint

Γ ` q ◦◦q
Γ ` q ′ C q

Γ ` q C q ′ Γ ` q◦◦?
q C q ′ ∈ Γ

Γ ` q C q ′
Γ ` q : t ff C ff ′ ∈ fCnstrs(t)

Γ ` q .ff C q .ff ′

Γ ` q ¿ q ′

Γ ` q ◦◦q ′
Γ ` q ′ ¿ q ′′ Γ ` q ′′ ◦◦ q

Γ ` q ◦◦ q ′

Q = Q1 ∩ q Q ′ = Q2 ∩ q ′ Γ ` q ◦◦ q′
Γ ` Q ◦◦Q ′

Q = Q1 ∩ q , Q ′ = Q2 ∩ q ′ =⇒ Γ ` q ◦◦q ′
Γ ` Q ◦◦Q ′

Well-formed types

q ∈ Dm(Γ)

Γ ` q Γ ` ?

Γ ` q : t ff ∈fF ields(t)
Γ ` q .ff

Γ ` Q Γ ` q Q = Q ′ ∩ q ′ =⇒ Γ ` q ◦◦q ′
Γ ` Q ∩ q

class c < p > ... ¢ ... |Q | = |p| Γ ` Q Q i C Q j ∈ pCnstrs(c <Q>) =⇒ Γ ` Q i C Q j

Γ ` c < Q >

Inside relation for owner parameters

Γ ` q ¿ q
Γ ` q ¿ q ′′ Γ ` q ′′ ¿ q ′

Γ ` q ¿ q ′
Γ(q) = c < q′ ∩Q ,Q ′ >

Γ ` q ¿ q ′

Figure 6. Well-formed types and the ‘inside’, intersects and disjoint relations for owner parameters

Wildcards in both MOJO and Java are a use-site vari-
ance mechanism, as opposed to declaration-site vari-
ance, found in, for example, Scala [39] (again in the
contex of type, not ownership, parameters).

3.6 Types of expressions

The type of an expression e depends on an environment
Γ and is given by the judgment Γ ` e : t defined in fig-
ure 7. The rules are as expected for an ownership type
system, with some special care taken for field assign-
ment and parameter passing when the types involve ?,
this is done using the ‘strict’ versions of the field and
method type functions, also given in figure 7. Consider
the following classes:

class B<b1>{ ... }

class C<c1>{ B<c1> f1; B<?> f2; }

in the example:

class Test<t1,t2>{

void m1(C<t1> x, C<?> y){

x.f2 = new B<t2>; // type correct

x.f2 = new B<?>; // type correct

y.f1 = new B<t2>; // type error

y.f1 = new B<?>; // type error

y.f2 = new B<?>; // type correct

}

}

the assignments to x.f2 are type correct because from
the point of view of x its field f2 may contain a D<Q>,

for any actual owners Q . On the other hand, any assign-
ment to y.f1 is type-incorrect, because from the point
of view of y its field f1 must contain a D<Q>, for some
fixed actual owners Q , which are unknown in the cur-
rent context. In terms of our formal description, the first
two and the last assignment are type correct, because
for all Q , it holds that [Q/c1]strictB<any> = B<any>;
the next two assignments are type incorrect, because
[?/c1]strictB<c1> is undefined.

Furthermore, the types of fields and methods need to
treat the actual ownership parameter this specially; ie
it replaces this by the expression whose field or method
is being selected, provided that e denotes a constant
value. This is described through tΓ·e , defined in figure
4, where this ∈ t means that this appears in t :

The following lemma is used to prove soundness of
the type system (in Theorem 1 for the cases of field
assignment and method call):

Lemma 3. If e and e′ are paths evaluating to the
same the address in heap h, and [Q ′′/p]strictt 6= ⊥, and
[Q ′/p′]Q i ≤ Q ′′

i for all i, then:
[Q ′/p′](([Q/p]t)h·e) =h [Q ′′/p](th·e′).

Note that without the requirement [Q ′′/p]strictt 6=
⊥, the left hand side type would have been a pure
subtype of the righthand side.

Subtypes

q v q q v ?

Q v Q ′ q v q ′

Q ∩ q v Q ′ ∩ q ′ Q v Q ∩ ?

c<p> ¢ c′<Q ′>

c<Q><: c′<[Q/p]Q ′>

Q v Q ′

c<Q><: c<Q ′>

Strict method and field type lookup

[Q/p]strictt =


[Q/p]t, if ?∈Q i ⇒ pi /∈ t
⊥, otherwise.

fTypestrict(c<Q>, f, e,Γ) = [Q/p]strictt′, where t = fTypeaux(c<P>, f) and t′ = tΓ·e .

mTypestrict(c<Q>,m, e,Γ) = [Q/p]strictt3 → [Q/p]t4,
where t1 → t2 = mTypeaux(c<p>,m) and t3 = t1

Γ·e and t4 = t2
Γ·e .

Types of Expressions

Γ ` q : Γ(q)

Γ ` t

Γ ` new t : t

Γ ` e : t ′ t ′ <: t

Γ ` e : t

Γ ` e : t
fType(t, f, e,Γ) = t′

Γ ` e.f : t′

Γ ` e : t
fTypestrict(t, f, e,Γ) = t′

Γ ` e ′ : t′

Γ ` e.f =e ′ : t′

Γ ` e : t
mTypestrict(t,m, e,Γ) = t′ → t′′

Γ ` e ′ : t′

Γ ` e.m(e ′) : t′′

Figure 7. Subtypes, and Typing rules.

3.7 Well-formed Class and Program

A class is well-formed if it has the same owner as
the superclass, the superclass type is well-formed,
types mentioned in fields and methods are well-formed,
and method bodies are well typed. For checking well-
formedness of the superclass, constraints between own-
ership parameters are taken into account. For checking
types of final fields, this is allowed to appear in t.
For checking types of fields and method bodies, con-
straints between final fields are also taken into account;
this happens implicitly, through the introduction of
this c <p> into the environment Γ′′. Fields must not
overlap with those from the superclass. Finally, the con-
straints on ownership parameters and final fields must
be well-formed.

class c<p> pCnstr ¢ c′<Q> { fin t ff fCnstr t ′ f mth }
Q1 = p1

Γ = p, pCnstrs(c <p>) Γ ` c′ < Q >
Γ′ = Γ, this Γ′ ` t

Γ′′ = Γ′, this c <p> Γ′′ ` t ′ Γ′′ ` mth

finF ields(c′<Q>) = t ′′ ff ′ ff ′ ∩ ff = ∅
nonfinF ields(c′<Q>) = t ′′′ f ′ f ′ ∩ f = ∅

` Γ′′¦
c <p> well formed

Because MOJO does not require owners to be dom-
inators, there is no need for annotations requiring that
certain owner parameters should be inside others. Thus,
we have omitted them for simplicity, although such an-
notations allow more information about disjointness to
be deduced, and should be part of a full language.

The constraints on owner parameters and fields are
well-formed if they contain no contradictions:

Γ ` p ◦◦p′ ⇒ Γ 6` p ◦◦ p′

Γ ` p ◦◦ p′ ⇒ Γ 6` p ◦◦p′
` Γ¦

A method body is well typed if it contains an expres-
sion of the same type as the return type of the method,
and if overriding is legal (defined in figure 9).

Γ(this) = c <p>

class c <p> pCnstr ¢ c′ < Q > ...
Γ ` t Γ ` t ′ Γ, t ′ x ` e : t

override(m, c′ < Q >, t ′ → t)

Γ ` t m(t ′ x){e}

3.8 Runtime Types

The function env maps heaps to typing environments,
enriching these with information about the values of
final fields:

Definition 1. We define env as follows:

• env(ι 7→ obj) = env(ι 7→ obj)
• env(ι 7→ obj) =

{ ι : c <R> } ∪ { ι.ff 7→ ι } ∪
{ (ιi C ιj) | ff i C ff j ∈ fCnstrs(c <R>)}

where obj = (c <R>,ff 7→ ι, ...)

Wherever an environment gives a judgment, a corre-
sponding heap gives the same judgment:

h ` judg x ⇐⇒ env(h) ` judg x

Thus we obtain judgements for typing expressions, well-
formed types, the inside relation, etc:

h ` ι¿ ι′ h ` Q ◦◦ Q ′ h ` Q ◦◦ Q ′ ` h¦
h ` Q h ` c <Q> h ` e : t

3.9 Well-formed Heap

[[ι]]h = {ι′ | h ` ι′ ¿ ι }

h(ι) = (c<R>, ,) h ` c<R>

fType(c<R>, f, ι, h) = t =⇒ h ` h(ι)(f) : t

h ` ι

∀ι ∈ Dm(h) : h ` ι
[[ι]]h ∩ [[ι′]]h 6= ∅ =⇒ h ` ι ◦◦ι′

h ` ι ◦◦ ι′ =⇒ [[ι]]h ∩ [[ι′]]h = ∅
` h ¦
` h

Figure 8. Well-formed objects and heaps

In figure 8 we define well-formed objects and heaps.
An object ι in the heap is well-formed, expressed by
h ` ι, if its type is well-formed, and all its fields have
types according to their static types. The heap is well-
formed if all objects in the heap are well-formed; where
the boxes of objects intersect in the heap, the heap can
show that these objects are in a ◦◦ relationship; if the
heap can show that two objects are in a ◦◦ relationship,
then their boxes do not overlap; finally, the heap must
contain no contradictions, i.e. there exist no objects ι,
ι′ such that h ` ι ◦◦ι′ and h ` ι ◦◦ ι′.

3.10 Soundness of the Type System

Theorem 1. For a well formed program, if h ` e : t
and ` h and e, h ; ι, h ′, then h ′ ` ι : t, and ` h ′.

Proof. By structural induction, and using lemmas 6, 7,
9, 10 and 11, listed in this section.

The proofs of lemmas 6, 7, 9, 10, and 11 use further
auxiliary lemmas.

Lemma 4 (Inversion Lemma). We define the inver-
sion lemma in the usual way, that is, in a well-formed
program, if Γ ` e : t then the premises of the appropri-
ate type rule holds. The only case that is interesting is
where e = q, in which case we must insist that Γ(q) is
defined. This ensures q is not a path, but a variable.

Lemma 5. In a well-formed program, if ` h and h `
e : t then

1. neither x nor this appear in e;
2. t = c <R>.

We first prove that runtime types and the inside
relation are invariant with execution, while disjointness
and possible intersection of objects are monotonic:

Lemma 6. In a well-formed program, if ι, ι′ ∈ Dm(h),
and e, h ; ι′′, h′, and h ` e : t′, then

1. h ` ι : t if and only if h′ ` ι : t

2. h ` ι ¿ ι′ if and only if h′ ` ι ¿ ι′

3. h ` ι C ι′ if and only if h′ ` ι C ι′

As usual in soundness proofs, we need a substitu-
tion lemma; in our particular setting, the substitution
needs to be aware of ownership and allowed/forbidden
intersections.

For a substitution σ which maps this and x to
addresses, we define its expansion, σh, so that it also
maps formal ownership parameters (p). We then define
the concept of an appropriate substitution Γ, h ` σ, as
one which preserves all constraints impled in Γ:

Definition 2. Given a σ : {this, x} −→ N, we define:

• σh : id −→ Pwr(N) as follows:

1. σh(this) = σ(this), σh(x) = σ(x).

2. σh(p) = Ri if h(σ(this)) = (c < R >, ..., ...) and
Dm(c) = p and p = pi ; undefined otherwise.

• σh ◦ t indicates the application of σh on type t.

• σh ◦ e indicates application of σh on expression e.

• Γ, h ` σ iff for any constraint C:

1. q C q ′ ∈ Γ =⇒ h ` σh(q) C σh(q ′),

2. h ` σ(this) : σh ◦ Γ(this),

3. h ` σ(x) : σh ◦ Γ(x),

4. p ∈ Dm(Γ) =⇒ σh(p) ⊆ Dm(h),

5. p ∈ Dm(Γ), ι, ι′ ∈ σh(p) =⇒ h ` ι ◦◦ι′.
We can now prove the substitution lemma:

Lemma 7. If Γ, h ` σ then:

1. Γ ` q ¿ q ′ implies h ` σh(q) ¿ σh(q ′).
2. Γ ` q C q ′ implies h ` σh(q) C σh(q ′).
3. Γ ` Q C Q ′ implies h ` σh(Q) C σh(Q ′).

Constraint lookup and method override

pCnstrs(Object) = ∅

class c <p> pCnstr ¢ c′<Q ′> ...

pCnstrs(c<Q>) = [Q/p]pCnstr , pCnstrs([Q/p]c′<Q ′>)

fCnstrs(Object) = ∅
class c<p> pCnstr ¢ c′<Q ′> { fin t ff fCnstr t ′ f mth }
fCnstrs(c < Q >) = [Q/p]fCnstr , fCnstrs([Q/p]c′<Q ′>)

mType(m, c<Q>) undefined

override(m, c<Q>, t ′ → t)

mType(m, c<Q>) = t ′ → t

override(m, c<Q>, t ′ → t)

Figure 9. Constraint lookup functions and overrride function.

4. t′ <: t implies σh(t ′) <: σh(t).
5. Γ ` q : t implies h ` σh(q) : σh(t).
6. Γ ` t implies h ` σh(t).
7. Γ ` e : t implies h ` σh(e) : σh(t).

We define t[c¢c′] the “projection” of a type t as seen
from a class c to the way it is seen from a subclass c′,
and similarly, of an environment or an expression:

Definition 3. For environment Γ, classes c, c′, type t,
expression e, p = Dm(c), p′ = Dm(c′), we define:

e[c¢c′] = [Q/p]e, if c′ <p′> <: c <Q>
undefined, otherwise.

t[c¢c′] = [Q/p]t, if c′ <p′> <: c <Q>
undefined, otherwise.

Γ[c¢c′] = [Q/p]t ′ x, c′<p′> this, p′, pConstr′

if c′ <p′> <: c <Q> for some Q, and

Γ = t ′ x, c <p> this, p, pConstr,

and pConstr′ = [Q/p]pConstr.
undefined, otherwise.

We then prove that projection to subclasses preserves
typing. In other words, if a type t is well formed in
an environment from class c, then the projection of t
onto the subclass c′ is well-formed in the environment
as defined in the subclass c′.

Lemma 8. For classes c, and c′, environments Γ so
that Γ[c¢c′] is defined:

• t <: t ′ implies t [c¢c′] <: t ′[c¢c′]
.

• Γ ` q : t implies Γ[c¢c′] ` q [c¢c′] : t [c¢c′].

• Γ ` t implies Γ[c¢c′] ` t [c¢c′].

• Γ ` e : t implies Γ[c¢c′] ` e[c¢c′] : t [c¢c′].

Using the above lemma we can prove that in well-
formed programs the method body always satisfies its
type:

Lemma 9. If mTypeaux(c < p >, m) = t1 → t2 and
mBodyaux(c<p>,m) = (x, e), and Γ = this : c<p>, x :
t1, p, pCnstrs(c<p>), then Γ ` e : t2.

We prove that subclassing preserves method types:

Lemma 10. In a well-formed program, if c < p >
¢ c′ < Q ′ > and mTypeaux(c′ < p′ >,m) = t1 → t2
and class c′ < p′ > ... then mTypeaux(c < p >, m) =
[Q ′/p′]t1 → [Q ′/p′]t2.

Lemma 11. In a well-formed program, if e, h ; ι′, h ′

and h(ι) = (t, ...) then h ′(ι) = (t, ...).

4. Effects
Effects are used to give a conservative estimate of the
area of the heap read or written by an expression. We
describe these areas through one or more boxes, where
the “∪” operator describes the union of such boxes. The
first part of an effect is the area being read; the second
is the area being written:

φ ::= ε | Q ∪ φ boxes
ψ ∈ Effect ::= φ/φ effect

We expect programs to come equipped with a func-
tion to give us the effects of a method6:

Meff (,) : Idclass × Idmth −→ Effect

4.1 The Example with Effects

We now revisit the example from section 2, and give the
values for the function Meff (,) through comments in
the code.

class Duration<d1> {

Date<this> start; Date<this> end;

void delay(){...} // EFF: this / this

}

class Task<t1> {

Duration<this> duration;

void delay(){...} // EFF: this / this

}

class Worker<w1>{

TaskList<this, this> tasks;

void add(Task<this & ?> t){...}

6 Through the lookup function we skip the requirement for the
definition of syntax.

Effects of expressions

q ∈ {this, x}
Γ è q : ε / ε

Γ ` t

Γ è new t : ε / ε

Γ è e : φ1 / φ2 Γ ` φ1 ¿e φ3 Γ ` φ2 ¿e φ4 Γ ` φ3 ¿e φ4

Γ è e : φ3 / φ4

Γ è q : φ / φ′

Γ è q .f : φ∪q / φ′ Γ è e : φ / φ′ Γ ` e : c <Q ,Q>

Γ è e.f : φ∪Q / φ′

Γ è q : φ1 / φ2 Γ è e ′ : φ3 / φ4

Γ è q .f = e ′ : φ1∪φ3∪q / φ2∪φ4∪q

Γ è e : φ1 / φ2 Γ è e ′ : φ3 / φ4 Γ ` e : c <Q ,Q>

Γ è e.f = e ′ : φ1∪φ3∪Q / φ2∪φ4∪Q

φ/φ′ = Meff (c<p>,m) Γ è q : φ1 / φ2 Γ è e ′ : φ3 / φ4 Γ ` e ′ : [Q/p]t ′

Γ è q .m(e ′) : φ1∪φ3∪q∪[Q/p]([q/this]φ) / φ2∪φ4∪[Q/p]φ′

Γ ` e : c<Q> φ/φ′ = Meff (c<p>,m) Γ è e : φ1 / φ2 Γ è e ′ : φ3 / φ4 Γ ` e ′ : [Q/p]t ′

Γ è e.m(e ′) : φ1∪φ3∪Q1∪[Q/p]([Q1/this]φ) / φ2∪φ4∪[Q/p]φ′

Effects inside other effects

Γ ` ε¿e φ

Γ ` q ¿ q ′

Γ ` q ¿e q ′
Γ ` φ1 ¿e φ2 Γ ` φ2 ¿e φ3

Γ ` φ1 ¿e φ3

Γ ` φ1 ¿e φ3 Γ ` φ2 ¿e φ4

Γ ` φ1 ∪ φ2 ¿e φ3 ∪ φ4 ∪ φ5

Disjoint effects

Γ ` ε#φ

Γ ` φ#φ′

Γ ` φ′#φ

Γ ` φ#φ′

Γ ` φ#φ′′

Γ ` φ#φ′ ∪ φ′′
Γ ` q ◦◦ q ′

Γ ` q ∩Q # q ′ ∩Q ′

Figure 10. Effect rules for expressions, ‘inside’ and disjointness relations for effects.

// EFF: this / this

void delay(){...} // EFF: this / this

}

class TaskList<l1,l2>{

TaskList<l1,l2> next;

Task<l2 & ?> task;

void add(Task<l2 & ?> t) // EFF: l1 / l1

void delay(){...} // EFF: l2 / l2

}

class Project<p>{ //

TaskList<this, this> tasks;

void add(Task<this & ?> t){...} //

// EFF: this / this

void delay(){...} // EFF: this / this

}

4.2 Effects of Expressions

In this and the following sections we introduce effects
for expressions and the disjointness and inside relations

for effects. We go on to prove soundness of the effect
system (theorem 3): that is, if the effects of two expres-
sions are disjoint, then the order of their execution is
unimportant.

The effects of expressions are defined through the
judgment Γ `e e : φ / φ′, given in figure 10. The
rules are fairly straightforward, with effects of sub-
expressions propagated to the enclosing expression;
reading or writing a field causing a read or write ef-
fect. Method invocation is more interesting: care must
be taken to substitute the owners of the receiver into
the effects of the method body correctly. The order of
substitutions is crucial, as it was for the type rules.
Furthermore, if the receiver of a field read, field write
or method call is a path (i.e. a q), then the effect can
be calculated more precisely. In our example:

final Worker<this> w1 = new Worker<this>;

final Worker<this> w2 = new Worker<this>;

w1 disjoint w2;

w1.delay(); // EFF: w1 / w1

w2.delay(); // EFF: w2 / w2

final Project<this> p1=new Project<this>;

p1.delay(); // EFF: p1 / p1

The inside relation for effects (¿e) is given in figure
10; one effect is inside another if it covers a smaller part
of the heap.

4.3 Well-formed Programs with Effects

A program is well formed if, in addition to the require-
ments from section 3.7, a) the read/write effect of a
method body is inside its declared effect, b) the declared
write effect of a method body is within its declared
read effect, and c) the effect of an overriding method
is inside the effect of any overridden method. Formally,
we require that a) t m(t ′ x){e} in c<p> implies that
Γ `eff e : Meff (c,m), b) Meff (c,m) = φ1/φ2 implies
that Γ ` φ2 ¿e φ1, where Γ = p, c<p > this, and
c) Meff (c,m) = φ1/φ2 and Meff (c′,m) = φ3/φ4 and
c<p> ¢c′ <Q> implies that Γ ` φ1 ¿e [Q/p]φ3 and
Γ ` φ2 ¿e [Q/p]φ4, where Γ = p, c<p> this.

As a counterpart to lemma 8, lemma 12 guarantees
that the effect of an expression is preserved in a subclass
modulo the necessary renamings for ownership param-
eters:

Definition 4. For environment Γ, classes c and c′,
where p = Dm(c), p′ = Dm(c′), and effect φ, we define:

φ[c¢c′] = [Q/p]φ, if c′ <p′> <: c <Q>
undefined, otherwise.

Lemma 12. For classes c, and c′, and environments Γ
so that Γ[c¢c′] is defined:

• Γ ` φ ¿e φ′ implies Γ[c¢c′] ` φ[c¢c′] ¿e φ′[c¢c′].
• Γ è e : φ / φ′ implies Γ[c¢c′]

è e[c¢c′] : φ[c¢c′] / φ′[c¢c′].

In well-formed programs, the write effect is always
inside the read effect for any expression:

Lemma 13. In a well-formed program, if Γ `e e :
φ / φ′, then Γ ` φ′ ¿e φ.

Proof. Straightforward induction on Γ è e : φ / φ′.

4.4 Projecting Effects onto the Heap

Based on the ¿ relation for objects (from figure 6), we
define [[φ]]h , the projection of an effect φ to a heap:

Definition 5.
[[r]]h = { ι | h ` ι¿ r}
[[r ∩ R]]h = [[r]]h ∩ [[R]]h
[[φ ∪ φ′]]h = [[φ]]h ∪ [[φ′]]h

We can prove that the type of an expression describes
the boxes to which its evaluation will belong:

Lemma 14. If h ` e : c < R,R > and e, h ; ι, h ′,
then ι ∈ [[R]]h′ .

Proof. Straightforward application of the definitions
(def 5, and ¿ from fig. 6), and theorem 1.

We give rules for judging the disjointness relation
(Γ ` φ# φ′) in figure 10. The rules state that the
empty effect is disjoint from all effects; that the disjoint
relation is symmetric and distributive with respect to
the union of effects; and that if any pair of owners in
a pair of sets of multiple owners are disjoint (by the ◦◦
relation), then the effects denoted by this pair of sets is
disjoint (by the # relation).

In the following lemma, the first two assertion guar-
antee soundness of the inside and disjointness judg-
ments are sound wrt. the projection of effects. The last
assertion is the counterpart to lemma 7.

Lemma 15. For any effects φ, φ’, environment Γ,
substitution σ with Γ, h ` σ, and ` h, we have

• If Γ ` φ ¿e φ′, then [[σh ◦ φ]]h ⊆ [[σh ◦ φ′]]h.
• If Γ ` φ# φ′, then [[σh ◦ φ]]h ∩ [[σh ◦ φ′]]h = ∅.
• If Γ è e : φ / φ′, then h è σh ◦ e : σh ◦ φ / σh ◦ φ′.

Proof. by induction on derivations of Γ ` φ ¿e φ′, resp.
Γ ` φ# φ′, resp. Γ è e : φ / φ′, and using lemma 7.

4.5 Soundness of the Effects System

Soundness of the effects system guarantees that the read
and write effects completely describe the areas of the
heap read and written during some execution. We use
the * operator, inspired by separation logic notation,
for “concatenation” of functions with disjoint domains.
Thus, the construction h ∗ h′ implicitly guarantees dis-
jointness of h and h′. The notation h|A means the re-
striction of the mapping h to the domain A.

Theorem 2. In a well formed program, if Γ, h ` σ, and
Γ è e : φ / φ′, and σ ◦ e, h ; ι, h ′, then there exist
heaps h1 , h2 , h3 , h4 and h′2 so that:

• h=h1∗ h2∗ h3, and h′=h1∗ h′2∗ h3∗ h4,
• e, h1 ∗ h2 ; ι, h1 ∗ h′2 ∗ h4,
• h1∗ h2 =h|[[σh◦φ]]h and h2 =h|[[σh◦φ′]]h
• h1∗ h′2 =h′|[[σh◦φ]]h′ and h′2 =h′|[[σh◦φ′]]h′

Proof. By induction on the derivation of e, h ; ι, h′. We
use an “effects inversion lemma”, e.g. Γ è e.f : φ / φ′

implies that Γ è e : φ1 / φ2, and Γ ` e : c<Q ,Q>,
and Γ ` φ1 ∪Q ¿e φ, and Γ ` φ2 ¿e φ′, and
Γ ` φ′ ¿e φ for some φ1 and φ2. We also use the fact
that e, h ; ι, h′ implies that if h′ and h′′ are disjoint,
then e, h ∗ h′′ ; ι, h′ ∗ h′′.

We now prove that the execution of two expressions
with disjoint effects is independent, in the sense that
the order of their execution is immaterial:

Theorem 3. In a well formed program, if Γ, h ` σ,
and ` h and Γ è e1 : φ1 / φ2, and Γ è e2 : φ3 / φ4,
and Γ ` φ1 # φ4 and Γ ` φ2 # φ3, then

σ ◦ e1, h ; ι′, h′′, σ ◦ e2, h
′′ ; ι, h′,

implies
σ ◦ e2, h ; ι, h′′′, σ ◦ e1, h

′′′ ; ι′, h′

Proof. The proof is based on Matthew Smith’s thesis
[47], which develops an abstract model of independence
of expressions based on disjointness of effects for any
languages satisfying a set of basic requirements. Theo-
rem 3.5.2 from [47] guarantees the assertion of our the-
orem provided that the heap satisfies basic composition
and decomposition properties (SH1-SH6 in [47]), that
execution also satisfies basic decomposition properties
(LL2,L1-L5 in [47]), and that effects also satisfy de-
composition properties (LS1-LS5). Property LS4 cor-
responds to theorem 2. All the other properties can be
easily proven for MOJO.

In terms of our example

w1 disjoint w2;

w1.delay(); // EFF: w1 & ? / w1 & ?

w2.delay(); // EFF: w2 & ? / w2 & ?

p1.delay(); // EFF: p1 & ? / p1 & ?

From e1#e2 we obtain that e1 & ?#e2 & ? and there-
fore e1.delay() and e2.delay() are independent of
each other in the sense of the above theorem. On the
other hand, e1.delay() and p1.delay() are not neces-
sarily independent as we have no information regarding
the disjointness of w1 and p1.

5. Discussion and Future Work

We plan to implement MOJO, investigate its applicabil-
ity, especially extensions to support race-free programs
and atomicity [9, 20]. In this section we discuss the
repercussions of giving up owners as dominators, outline
some idioms of multiple ownership, and some shortcom-
ings in our use of ?.

5.1 Giving up Owners as Dominators

As we said earlier, MOJO does not attempt to enforce
the owners as dominators discipline. In other words,
MOJO is a descriptive system: ownership characterizes
the topology of the heap, rather than constrains it.

This is why MOJO does not require that ownership
parameters preserve some “inside” relationship. Fur-
thermore, without the owners as dominators discipline,
and with the use of paths as actual owner parameters,
some idioms, e.g. multiple iterators over one list, are

straightforward to implement, i.e.

class List<l1,l2>{

Node<this,l2> head;

Iterator<this,l2> makeIterator()

{ new Iterator<this,l2>.next = head; }

...

}

class Node<n1, n2> {

Data<n2> d; Node<n1,n2> next; ...

}

class Iterator<i1,i2>{

Node<i1,i2> next; ...

}

...

final List<o1,o2> list1;

Iterator<list1,o2> iter1 = list1.makeIterator();

In our example, iter1.next points to a node owned
by list1. Note that we did not make use of multiple
ownership, since all the nodes pointed at by one iterator
belong to the same list.

In contrast, owners-as-dominators systems [7, 23, 5])
impose topological restrictions on heaps: a box’s owner
must be a dominator on all paths leading into the
objects in the box: there can be no incoming pointers
into a box (except from the box’s owner). This amounts
to requiring that

a −→ b =⇒ a ∈ [[owner(b)]]
that is, if a points to b, then a is inside b’s owner.

We want to extend the MOJO type system so that
references are permitted only if they come from within
one of the owners (note we say a ∈ owners(b) rather
than a ∈ owner(b)). Thus, owners as dominators will
apply to types instantiated with a single owner, and will
be extended to owners as articulation points otherwise.

Furthermore, owners-as-modifiers systems, e.g. [31,
18], allow incoming pointers but forbid incoming mes-
sages that may modify an object: all modifications must
pass via an object’s owner. To represent owners-as-
modifiers in MOJO, one would allow non-pure method
calls only if the sender is inside the receiver’s owners’
boxes.

5.2 Idiom 1: Boxes for Variables

In contrast to many effects systems, e.g. OOFX [22],
MOJO does not directly distinguish between object
fields. For example, if Task had methods delay and
bribe updating field cost and time respectively, then
these methods would have effect “this / this” and
MOJO would be unable to deduce their noninterference.

Field effects, although not directly included in our
formal system, can be modelled with a simple idiom:
Define a IntBox class with a single field, and getter and

Cost 1

Time1

Task1

Cost 2

Time2

Task2

Project

Figure 11. Cost and Time boxes inside Task boxes

setter methods for that field, affecting only that object.
Rewrite the Task class to store each field in an IntBox
with its own separate final field owner (see Figure 11),
and use the getter and setter methods.

The effect of each method is localised to its IntBox,
so wherever IntBoxes are visible, the methods can be
distinguished.

5.3 Idiom 2: Multiple Boxes per Object

In some cases it is useful to link boxes between nested
objects. For example, in figure 12 the project has cost
and duration boxes. We require each task’s cost to be
inside the project’s cost, and similarly duration inside
the project’s duration. That would allows us to show
that delay methods on projects affect only durations,
and do not affect the cost of the project or any of its
tasks (and vice versa).

We can code this by giving two additional owner-
ship parameters to Task (e.g. timeO representing time,
costO representing cost), and placing the time and cost
objects into the intersection of the respective ownership
boxes, e.g. through Duration<this & timeO> time.

5.4 Generics, and the meaning of ?

An obvious extension of MOJO would be the introduc-
tion of generic types, so as, e.g. to allow the definition
of generic lists [18, 42].

Another challenge is a more powerful notion of exis-
tential quantification than our current ?, which is, we
believe, adequate but could be more powerful. In par-
ticular, in our current solution, the TaskList is aware
that its tasks have two owners, and the second one is
unknown to the list. Thus, a TaskList whose tasks have
three owners would require the declaration of a further
class. This clearly restricts the reuse of the classes. It
would be better if only classes Worker and Project were
aware of the possible other owners of the tasks involved,
and class TaskList was unaware of that. We plan to ex-
tend our approach so as to address this issue.

Seen from a related viewpoint, ? is related to the no-
tion of existential types. Thus, a list of tasks which share
the same hidden owner would be ∃X.List<Task<X>>
while a list of tasks where each tasks has a potentially

Cost

Time

Task1 Task2

Project

Figure 12. Nested, interlocking ownership.

different, hidden owner would be List<∃X.Task<X>>.
Note that the counterpart to the former is expressible
but not denotable using Java wildcards [11].

6. Related Work

MOJO draws on two primary sources — on effects
systems and on ownership types — and more recently,
on work combining the two. Larger surveys of these
areas can be found in [15, 41, 47]; here we provide an
overview.

Effects systems and other approaches for syntactic
control of interference have been developed for over
thirty years [33, 44]. After interesting precursor work by
Daniel Jackson [27], work on effects systems for object-
oriented programs began with Leino’s Data Groups [30]
and Greenhouse and Boyland’s Object-Oriented Effects
System (OOFX) [22]. Data Groups were designed to
support framing of changes across inheritance hierarchy,
while OOFX provides a more general framework for
reasoning about object-oriented programs.

Ownership types [14] were created by Clarke [12] to
implement the flexible alias protection proposal [38].
Several variants of ownership types have been built
including Confined Types [7, 23], Ownership Domains
[2, 28], Generic Ownership [41, 42], Universes [35, 18],
and have been used for purposes ranging from program
verification [29, 36] to concurrency [8], to real-time
memory management [5].

While these systems vary in the provided language
constructs, type systems, and invariants, they all main-
tain the key constraint that every object has one owner
at any given time. While some precursor work specu-
lates about shared ownership, ours is the first to provide
multiple owners.

The first system to combine effects and some form of
ownership was Greenhouse and Boyland’s OOFX [22]:
effects from encapsulated subcomponents could be in-
corporated into effects upon their owners provided the
subcomponents were accessed via a unique pointer. This
system has recently been proven correct using adoption
and separation logic [10]. OOFX includes a restricted

form of multiple ownership in that instance regions can
simultaneously belong to the instance, and to a corre-
sponding region of a superordinate object. OOFX boxes
(regions) cannot otherwise overlap, even though in e.g.
Data Groups one field could be in more than one group.
Boyland argues that intersecting regions limit effect sep-
aration: however multiple ownership’s intersection and
disjointness constraints remove this problem by making
the program’s local ownership topology clear: compu-
tations will be independent if their effects are known to
be disjoint.

Clarke and Drossopoulou’s JOE combines ownership
with effects [13]. Unlike OOFX, JOE does not provide
regions for variables or data groups within objects; JOE
effects describe objects from a particular depth inside
their owners. Smith subsequently constructed an effects
system for ownership domains [46].

Lu and Potter designed a number of interesting own-
ership type systems based on effects [31, 32]. Effec-
tive ownership provides “effect encapsulation” — en-
forcing an owners-as-modifiers discipline without any
constraints on inter-object references. They have built
on this work to describe how ownership and effects can
model invalidating (and obligations to revalidate) ob-
jects’ invariants.

Most recently, Clifton’s MAO [15, 16] uses an own-
ership and effects system to manage interference in an
aspect-oriented language. MAO’s ownership model is
static, similar to that of confined types, with a set of
global domains, generally one per aspect instance plus
one for the base program. MAO’s model is sufficient
to detect aspect interference, and can be modelled in
MOJO as a series of “global” boxes (a larger scale ver-
sion of idiom 2 from section 5.3).

More generally, Multiple Ownership is related to
other approaches to managing objects, effects, and allo-
cation, such as region-based memory management [48]
and alias types [45]. Multiple Ownership is also related
to separation logic, in particular, Parkinson and Bier-
man’s abstract invariants [40] can be seen as defining
regions in the heap, as well as giving invariants for those
regions. The key difference is that separation logic for-
mulæ implicitly define the regions to which they apply,
whereas ownership (types or assertions) define regions
explicitly and independently of any formulæ. Finally,
our ownership diagrams are related to set diagrams used
in OO modelling, e.g. Spider and Constraint diagrams
[21].

7. Conclusion

. . . structures like the city, which do require
overlapping sets within them, are nevertheless
persistently conceived as trees.

Christopher Alexander, A City is not a Tree [3]

A city is not a tree, and neither is a program [6, 34, 43].
Multiple ownership does not impose an ownership tree
onto the objects in a program: it allows DAGs, and
places objects into boxes — sets — that may inter-
sect or remain disjoint as best serves the program’s de-
sign. Using this objects in boxes model for ownership,
we show how multiple ownership can be described as a
smooth generalisation of single ownership systems. We
have incorporated multiple ownership into the MOJO
programming language design, including an effect sys-
tem, that we have proven sound.

Acknowledgments This work was funded in part by
the Information Society Technologies program of the
European Commission, Future and Emerging Technolo-
gies under the IST-2005-015905 MOBIUS project; by
the EPSRC DTA grants; by the EPSRC grant Practi-
cal Ownership Types for Objects and Aspect Programs,
EP/D061644/1; by Microsoft Research Cambridge; by a
gift from Microsoft Research; and by the Royal Society
of New Zealand Marsden Fund.

We are grateful to David Cunningham and Alex
Buckley for their insightful comments, and to the
anonymous OOPSLA referees for their encouraging and
useful feedback.

References
[1] Marwan Abi-Antoun and Jonathan Aldrich. Ownership

domains in the real world. In IWACO workshop at
ECOOP, 2007.

[2] Jonathan Aldrich and Craig Chambers. Ownership
domains: Separating aliasing policy from mechanism.
In ECOOP, 2004.

[3] Christopher Alexander. A city is not a tree. Design,
(206), 1966.

[4] Paulo Sérgio Almeida. Balloon types: Controlling
sharing of state in data types. In ECOOP, 1997.

[5] Chris Andreae, Yvonne Coady, Celina Gibbs, James
Noble, Jan Vitek, and Tian Zhao. Scoped types and
aspects for real-time Java. In ECOOP, 2006.

[6] Gareth Baxter, Marcus R. Frean, James Noble, Mark
Rickerby, Hayden Smith, Matt Visser, Hayden Melton,
and Ewan D. Tempero. Understanding the shape of
Java software. In OOPSLA, 2006.

[7] Boris Bokowski and Jan Vitek. Confined types. In
OOPSLA, 1999.

[8] Chandrasekhar Boyapati, Robert Lee, and Martin
Rinard. Ownership types for safe programming:
Preventing data races and deadlocks. In OOPSLA,
November 2002.

[9] Chandrasekhar Boyapati and Martin Rinard. A
Parameterized Type System for Race-Free Java
Programs. In OOPSLA, pages 56–69, Tampa Bay,
FL, USA, 2001.

[10] John Boyland and William Retert. Connecting effects
and uniqueness with adoption. In POPL, 2005.

[11] Nicholas Cameron, Erik Ernst, and Sophia Drossopoulou.
Towards an existential types model for Java with wild-
cards. In FTfJP workshop at ECOOP, 2007.

[12] Dave Clarke. Object Ownership and Containment. PhD
thesis, UNSW, Australia, 2002.

[13] Dave Clarke and Sophia Drossopoulou. Ownership,
Encapsulation, and the Disjointness of Type and Effect.
In OOPSLA, 2002.

[14] David Clarke, John Potter, and James Noble. Owner-
ship types for flexible alias protection. In OOPSLA,
1998.

[15] Curtis Clifton. A design discipline and language
features for modular reasoning in aspect-oriented
programs. PhD thesis, Iowa State, 2005.

[16] Curtis Clifton, Gary T. Leavens, and James Noble.
Ownership and effects for more effective reasoning
about aspects. In ECOOP, 2007.

[17] Gilles Deleuze and Félix Guattari. A Thousand
Plateaus: Capitalism and Schizophrenia. U. Minnesota,
1987.

[18] Werner Dietl, Sophia Drossopoulou, and Peter Müller.
Generic universe types. In ECOOP, 2007.

[19] Sophia Drossopoulou. The benefits of putting objects
into boxes. ESOP, 2006. Invited Talk.

[20] Cormac Flanagan, Stephen N. Freund, and Marina
Lifshin. Type inference for atomicity. In TLDI, 2005.

[21] Joseph Gil, John Howse, and Stuart Kent. Towards a
formalization of constraint diagrams. In HCC, 2001.

[22] Aaron Greenhouse and John Boyland. An object-
oriented effects system. In ECOOP, 1999.

[23] Christian Grothoff, Jens Palsberg, and Jan Vitek.
Encapsulating Objects with Confined Types. In
OOPSLA, 2001.

[24] Ralf Hinze. The Fun of Programming, chapter Fun with
Phantom Types, pages 245–262. Palgrave Macmillan,
2003.

[25] John Hogg. Islands: Aliasing protection in object-
oriented languages. In OOPSLA, 1991.

[26] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: A minimal core calculus for Java
and GJ. In OOPSLA, November 1999.

[27] Daniel Jackson. Aspect: Detecting bugs with abstract
dependences. ACM ToSEM, 4(2), 1995.

[28] Neel Krishnaswami and Jonathan Aldrich. Permission-
based ownership: Encapsulating state in higher-order
typed languages. In PLDI, 2005.

[29] K. R. M. Leino and P. Müller. Object invariants in
dynamic contexts. In ECOOP, 2004.

[30] K. Rustan M. Leino. Data groups: Specifying the
modification of extended state. In OOPSLA, 1998.

[31] Yi Lu and John Potter. Protecting representation with
effect encapsulation. In POPL, pages 359–371, 2006.

[32] Yi Lu and John Potter. Object invariants and effects.
In ECOOP, 2007.

[33] John M. Lucassen and David K. Gifford. Polymorphic
effect systems. In POPL, 1988.

[34] Nick Mitchell. The runtime structure of object
ownership. In ECOOP, 2006.

[35] Peter Müller. Modular Specification and Verification
of Object-Oriented Programs, volume 2262 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

[36] Peter Müller. Reasoning about object structures using
ownership. In Verified Software: Theories, Tools,
Experiments, LNCS. Springer-Verlag, 2007.

[37] James Noble, Robert Biddle, Ewan Tempero, Alex
Potanin, and Dave Clarke. Towards a model of
encapsulation. In IWACO workshop at ECOOP, 2003.

[38] James Noble, Jan Vitek, and John Potter. Flexible
alias protection. In ECOOP, 1998.

[39] Martin Odersky and Matthias Zenger. Scalable
component abstractions. In OOPSLA ’05, pages 41–57,
New York, NY, USA, 2005. ACM Press.

[40] Matthew Parkinson and Gavin Bierman. Separation
logic and abstraction. In POPL, 2005.

[41] Alex Potanin. Generic Ownership — A Practical
Approach to Ownership and Confinement in OO
Programming Languages. PhD thesis, 2007.

[42] Alex Potanin, James Noble, Dave Clarke, and Robert
Biddle. Generic ownership for generic Java. In
OOPSLA, 2006.

[43] Alex Potanin, James Noble, Marcus Frean, and
Robert Biddle. Scale-free geometry in object-oriented
programs. Communications of the ACM, May 2005.

[44] John C. Reynolds. Syntactic control of interference. In
POPL, 1978.

[45] Frederick Smith, David Walker, and Greg Morrisett.
Alias types. In ESOP, 2000.

[46] Matthew Smith. Effects system for ownership domains.
In FTfJP workshop at ECOOP, 2005.

[47] Matthew Smith. A Model of Effects with an application
to Ownership Types. PhD thesis, Imperial College,
2007.

[48] Mads Tofte and Jean-Pierre Talpin. Region-Based
Memory Management. Information and Computation,
132(2):109–176, 1997.

[49] Mads Torgersen, Christian Plesner Hansen, Erik Ernst,
Peter von der Ahé, Gilad Bracha, and Neal Gafter.
Adding wildcards to the Java programming language.
In SAC ’04, pages 1289–1296, 2004.

[50] Tobias Wrigstad and Dave Clarke. Existential owners
for ownership types. JOT, 2007.

