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Abstract

Inclusion polymorphism (subclassing) and parametric polymorphism (generics) are often present

in modern object oriented languages. However, their integration is usually limited; an impor-

tant example is that variant subtyping of parametric types is usually forbidden, even though

in some circumstances it is safe and desirable. Existential types have been used to bridge the

gap between these two forms of polymorphism used in, for example, Java wildcards or Variant

Parametric Types.

In this thesis we investigate how existential types can be used to implement variant subtyping.

We contribute a soundness proof for Java with wildcards, and a new, minimal language that

uses existential types to implement variance for ownership types.

Java wildcards provide subtype variance to Java generics in a powerful and programmer friendly

way. Wildcards have been formalised using a variation on existential types; however, there has

never been a type soundness proof for Java with wildcards. Our main contribution is a new

formal model of Java with wildcards (Tame FJ) and a detailed proof of soundness.

Ownership types are a mechanism for structuring the topology of the heap in object oriented

programs. In an ownership types system, types are parameterised by owners. Similarly to

generics, owners are traditionally treated invariantly. There have been several, mostly ad

hoc, attempts to add some form of subtype variance to owner-parametric types. Our second

contribution is a minimal calculus (Jo∃) where existential quantification of owners is used to

uniformly and cleanly support variance. We include type parametricity in our language, and

the interaction of this with existentially quantified owners allows us to more precisely specify

the ownership properties of collections and similar code structures. We prove soundness and

the owners-as-dominators property for this system.
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Chapter 1

Introduction

Parametric polymorphism allows code to be written and type checked generically, and instan-

tiated with specific types. This increases the flexibility of the type system and improves reuse.

Various kinds of parametric polymorphism are found in functional languages and calculi, from

let-polymorphism in ML to universal types in System F [46, 80]. In the procedural world, para-

metric polymorphism, known as generic programming or generics, first appeared in Ada [4].

This gave rise to parameterisation of classes in object-oriented languages such as C++ [2, 86],

C# [1], and Java [14, 16, 47].

Parametric types in Java are called generic types, for example, List<String> represents a list

of strings; as opposed to the non-generic type List which does not specify the contents of the

list. Generic types are used throughout the Java libraries and are an important part of the

Java language.

We say parameterised types are variant if subtyping relationships between parameters cause

some subtyping relationship between parameterised types. Subtyping of generic types in Java

is invariant (type parameters cannot change across subtypes: ArrayList<String> is a sub-

type of List<String>, but List<String> is not a subtype of List<Object>) with respect to

their parameters, this is necessary to guarantee soundness. Variance consists of covariance,

contravariance, and bivariance. Types are covariant if a subtype relation between parameters

gives a subtype relation between parameterised types, contravariant if a supertype relation be-

19



20

tween parameters gives a subtype relation between parameterised types, and bivariant if both

cases hold.

Existential types [26, 27, 49, 64, 74, 75] are another form of polymorphism. Existential types

correspond to existential quantification in logic in the same way that universal types correspond

to universal quantification. Existential types model abstraction; they express that some com-

ponent of a type is unknown or partially known (of course, at some point in the program the

hidden type must be known, it is then deliberately concealed and treated as unknown). This

expression of partial knowledge is useful for dealing with variant generic types; if the compiler

only relies on partial knowledge of a type parameter, then it is safe for generic types to support

limited subtype variance (as opposed to in Java where variant subtyping of parametric types

would be unsafe). That is, if only the bounds of a type parameter are known, then operations

on variables of that type must be restricted; but, since fewer operations must be accommo-

dated, subtyping of types parameterised by the partially unknown type parameter can be less

restrictive.

In Java, wildcards are used to support subtype variance. Wildcards safely allow variant sub-

typing by restricting how objects with wildcard type can be used. Wildcard types correspond

closely to existential types, and these are used in most formal models of Java with wildcards

[54, 60, 90, 95].

Wildcards have been part of the Java language since 2004, but type soundness for Java with

wildcards has been an open question until now. There are several informal, semi-formal, and

formal descriptions of Java wildcards [14, 47, 60, 90] and soundness proofs for partial sys-

tems [24, 54]. However, a soundness proof for a type system exhibiting all of the interesting

features of Java wildcards has been elusive.

In an ownership types system [30, 32, 34, 33, 97], objects are structured to enforce encapsu-

lation policies or describe the heap. Rather than parameterising classes by types, classes are

parameterised by contexts (entities to which objects may belong, usually objects; sometimes

“context” is used to refer to the are of the heap owned by an object or other owner). By taking

this parameterisation into account and applying implicit rules of ownership, objects in the heap
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can be structured into a tree or graph. This structure can be used to enhance reasoning about

programs, restrict aliasing, and enforce encapsulation. Similarly to generic types, subtyping for

ownership types is usually invariant with respect to ownership parameters. Where some form

of variance has been supported [23, 57, 58, 66, 67], it has been severely restricted or ad hoc in

its formalisation, and often both.

1.1 Subtyping and Variance

A parametric class in Java, e.g., class List<X> ..., can be instantiated to a parameterised

type, for example, List<Shape>. Different actual type parameters create unrelated parame-

terised types (i.e., generic types are invariant), List<Circle> is not a subtype of List<Shape>,

even if Circle is a subtype of Shape.

Ownership types are parameterised by a context (usually an object) rather than a type, for ex-

ample, Shape<this> denotes a Shape object owned by this. Contexts are related by the inside

relation, rather than subtyping. Context parameterisation and the rules of the inside relation

define a hierarchical structure over the heap. Ownership types are invariant, Shape<this> is

not a subtype of Shape<owner>, even if this is inside owner.

There have been many approaches to variance in parametric type systems [8, 42, 54, 51, 61, 71,

87, 89] and several in ownership systems [23, 57, 58, 66, 67]; the Java solution is wildcard types

[14, 47, 90, 60]. These extend generics by allowing parameterised types to have actual type

arguments which denote unknown or partially known types, such as List<?>. Wildcards allow

for subtype relationships among parametric types; for example, List<? extends Circle> is a

subtype of List<? extends Shape>.

The closest system to wildcards in the ownership world is variant ownership types [58]. In this

system variance annotations (which also exist in the generics world [54]) are used to explicitly

denote the variance properties of context parameters. Although very similar to wildcards,

variance annotations are not as expressive. Furthermore, in ownership systems there are partial

abstractions of ownership that cannot be expressed with variance annotations or wildcards, for
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example, the difference between a list of objects where each object may be owned by a different

context and a list of objects where each object is owned by the same context. Maintaining

encapsulation properties is a further requirement on variance mechanisms in ownership types

which is not found in generic systems.

1.2 Existential Types and Variance

Existential types are used to express abstraction in types. For example, the function type

∃X.(X → X) denotes a function from some unknown type to that same type. Existentially

quantified type variables may be given bounds to express partial abstraction.

Existential types are introduced by packing a concrete value; this creates an abstract package.

Abstract packages are opaque, they cannot be used or accessed, only passed around. The

only operation that may be performed on abstract packages is unpacking, which eliminates

existential types. In traditional systems [27, 64, 74], only abstract packages have existential

types; no concrete value (that is an object or address) has existential type.

When used to quantify a parametric type, existential types express uncertainty about a type pa-

rameter. For example, the type ∃X.List<X> describes a list of objects with unknown type. We

use the notation→[Bl Bu] to express lower and upper bounds (Bl and Bu, respectively) on quan-

tified variables. Bounded existential types express partial knowledge about a type, for example,

∃X→[Circle Object].List<X> describes a list of objects with unknown type where that type

is a subtype of Object and a supertype of Circle (Object and Circle are the upper and lower

bounds, respectively). Following the standard rules for existential subtyping, we get variant

subtyping of generic types, as expected in object-oriented languages. Packing is used to relate

variant to invariant types. Unpacking must be performed to use variables with existential type.

In Java, wildcard capture corresponds to unpacking. Packing and unpacking is implicit, i.e., it

is not apparent to the programmer.
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1.3 Tame FJ

Tame FJ is an extension of FGJ [53], a minimal functional calculus that models the interesting

aspects of Java with generics. The syntax of types is extended with existential quantification to

model wildcard types. Explicit packing and unpacking (as used in traditional existential types

systems) are not expressive enough to model variance in Java (section 3.3.2), therefore, these

operations are implicit in Tame FJ.

Subtyping in Tame FJ extends that in FGJ to wildcard types, encoded as existential types.

This extension to subtyping includes existential packing and a limited form of unpacking. Thus,

subtyping in Tame FJ is significantly more complex than in FGJ and similar systems.

In formalisations of Java without wildcards, the types of fields and methods are invariant with

respect to subtyping. With wildcards, this no longer holds, in fact the relationship is consider-

ably more complicated. To address this, we split subtyping into subclassing and subtyping.

Type variables in Tame FJ may have upper and lower bounds. We need to avoid this so that

spurious subtype relationships cannot be derived; for example, if X is bounded by Shape and

String, we could derive that Shape is a subtype of String, which is unsound. Although X could

never be instantiated, this is difficult to reflect in the proofs. In Tame FJ, such relationships

are prevented by further splitting subtyping into extended subclassing and subtyping, and

using the former to check well-formedness of type environments. Only subtyping includes type

variables and their bounds, so this ensures that all subtype relationships judged under well-

formed environments reflect the subclass hierarchy.

Expressions must be unpacked and packed in the type system of Tame FJ. Unpacking is rel-

atively straightforward and follows previous formalisms. Packing is more complex because it

can create types that are not syntactically well-formed. Without correct packing, unpacked

type variables could escape their scope and cause unsoundness. We track unpacked variables

using guarding environments, an addition to the shape of the type checking judgement. The

unpacked variables are then re-packed using subtyping via an enhanced subsumption rule.
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The Java compiler supports type parameter inference. If unpacking is implicit, as in Tame FJ,

type parameter inference is required because existentially quantified type variables cannot be

named. Formalising this inference was a crucial, but complicated step towards a soundness

proof.

1.4 Jo∃

The various systems that support (use-site) subtype variance (wildcards, variant parametric

types, variant ownership types, etc.) can be thought of in terms of existential types; some

features of existential types are used in all of their formalisations. The surface syntax of these

systems is more restrictive than the underlying system using existential types. Therefore, to

design an ownership language with expressive subtype variance, we describe the underlying

existential types system, Jo∃.

Similarly to Tame FJ, Jo∃ adds existential quantification to the syntax of types; however,

in Jo∃, it is context variables that are quantified, not type variables. This is an important

distinction because context variables cannot be used as types in their own right, they can only

be used as type parameters. In contrast, quantified type variables can be used as both types

and type parameters. Therefore, quantification of contexts is simpler to reason about than

quantification of types.

Jo∃ uses explicit packing and unpacking: it has open and close expressions. This makes Jo∃
easier to reason about and closer to earlier work on existential types, at the expense of being less

realistic. Due to this and other simplifications, Jo∃ does not require some of the innovations of

Tame FJ, such as different kinds of subtyping relations or guarding environments. Furthermore,

the proof of soundness for Jo∃ is much simpler than it would be in a system with implicit packing

and unpacking.

By using existential types for variance, Jo∃ is more expressive, more uniform, and less ad hoc

than previous ownership systems with variant contexts. Jo∃ also supports type parameteri-

sation; this, in combination with quantification of contexts, allows Jo∃ to express even more
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types.

Jo∃ emerged naturally from design decisions to use existential quantification of contexts, pa-

rameterisation of contexts and types, and explicit packing and unpacking. The standard rules

for enforcing owners-as-dominators had to be re-thought to accommodate references with exis-

tential type. Indeed, because of these references, the proof of owners-as-dominators was much

more challenging than the proof of soundness.

1.5 Contributions

Soundness result for Java with wildcards Tame FJ is the first formalisation of wildcards

with all of the salient features of Java’s type system to be proved sound. A soundness result

is important because it guarantees that type-correct programs will not cause type errors at

runtime. If Java were unsound, then type-correct Java programs could crash, corrupt shared

memory, or allow security violations.

Jo∃ Jo∃ is the first language with explicit existential types to support subtype variance with

respect to ownership information. Jo∃ is more expressive and uniform than previous languages.

By using existential quantification to implement variance, rather than ad hoc mechanisms,

variance properties are more easily explained and understood. Jo∃ can be used to encode many

languages and language features, and thus allows for easy comparison of different proposals.

By making operations on existential types explicit, features of other languages can be clearly

explained in terms of well-understood type theory. We prove that Jo∃ is sound and that it can

support the owners-as-dominators encapsulation property.

We expect that our research around Jo∃ will have a primary impact amongst language designers,

rather than programmers. We do not offer a usable programming language, but give the

theoretical underpinnings for a language to be designed that combines the encapsulation benefits

of ownership types with the flexibility of subtype variance. We expect this work to be especially

valuable to research on intermediate languages for compilers involving ownership and program
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analyses using effects or similar techniques. These areas could benefit from the flexibility and

encapsulation, respectively, offered by Jo∃.

1.6 Thesis Organisation

In chapter 2 we give the necessary background to this thesis. We describe object-oriented

programming languages and parametric polymorphism, existential types, Java wildcards, and

ownership types. In chapter 3 we describe Tame FJ and its soundness proof, and discuss some

of the interesting aspects of Java wildcards in relation to existential types. In chapter 4 we

describe Jo∃ and discuss how existential types can be used to support subtype variance in

ownership languages. In chapter 5 we compare subtype variance and the use of existential

types in Tame FJ and Jo∃, and discuss related work. We conclude, and discuss related work, in

chapter 6. We outline proofs of soundness for Tame FJ in appendix A and proofs of soundness

and the owners-as-dominators property for Jo∃ and Jo∃deep in appendix section B.

1.7 Publications

In chronological order:

[20] Existential Quantification for Variant Ownership. Nicholas Cameron and Sophia Drossopoulou.

ESOP, 2009. This paper summarises the work in chapter 4.

[21] A Model for Java Wildcards. Nicholas Cameron, Sophia Drossopoulou, and Erik Ernst.

ECOOP, 2008. Describes Tame FJ and its soundness proof. The descriptions and discus-

sion of Tame FJ are expanded on in chapter 3.

[19] Variant Ownership with Existential Types. Nicholas Cameron and Sophia Drossopoulou.

IWACO, 2008 (position paper). Proposes the work in chapter 4.
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[23] Multiple Ownership. Nicholas Cameron, Sophia Drossopoulou, James Noble, and Matthew

Smith. OOPSLA, 2007. This work is touched upon in chapters 2 and 5 and had some

influence on the work in chapter 4.

[24] Towards an Existential Types Model for Java Wildcards. Nicholas Cameron, Erik Ernst,

and Sophia Drossopoulou. FTfJP, 2007. Describes a partial model for Java with wild-

cards, ∃J, that uses explicit packing and unpacking. This is briefly discussed in sec-

tion 3.3.2 and contributed to the design of Jo∃.

[37] A state abstraction for coordination in Java-like languages. Ferruccio Damiani, Elena

Giachino, Paola Giannini, Nick Cameron, and Sophia Drossopoulou. FTfJP, 2006. Not

directly relevant to this thesis.

[22] More Expressive Ownership Types. Nicholas Cameron, Sophia Drossopoulou, and James

Noble. Grant Proposal, awarded 2008. Motivates and outlines work in chapter 4 and

further work.

http://www.doc.ic.ac.uk/˜ncameron/papers/cameron proposal08.pdf



Chapter 2

Background

In this thesis we tackle wildcards in Java, and subtype variance for ownership types systems.

We use existential types to investigate both subjects and both are set in the context of Java-

like languages. In this chapter we give some background to these areas; we discuss object

oriented programming languages, specifically Java, in section 2.1. We extend this discussion

to parametric polymorphism, including Java generics and some alternatives, in section 2.2. In

section 2.3, we discuss existential types, we then use these to help describe Java wildcards in

section 2.4. Finally, in section 2.5 we give some background on ownership types and similar

systems.

2.1 Objects and Subtyping

The work in this thesis is based in the context of class-based object-oriented languages. Java

[47] is a widely used and studied class based object-oriented language. Because its syntax is

typical of a large family of object-oriented languages, we adopt it in this thesis. In a class-

based language, the programmer declares classes, objects are instantiations of these classes.

For example,

28
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class Shape {

void draw() {...}

}

defines a class Shape with a method draw. Shape objects are instantiated using the expression

new Shape().

Class names are often used as types; in Java-like languages, the object given by new Shape()

has type Shape. Thus, classes play a dual role: they are templates for object instantiation and

types. Java also includes interfaces; an interface defines a type, but cannot be instantiated.

Interfaces allow for a limited form of multiple inheritance in Java and allow for type to be

somewhat separated from class.

Inheritance supports code re-use. A subclass may declare that it inherits from a superclass

using the extends keyword, for example:

class Circle extends Shape {

Shape getBound() {

return this;

}

int countEdges() {

return 1;

}

}

A subclass inherits all of the functionality of the superclass, thus Circle includes a draw method

from Shape.

2.1.1 Subtyping in Object-Oriented Languages

In many object-oriented languages (including Java, C#, C++, and Scala), subtyping follows

from inheritance (subclassing). In our example, Circle is a subtype of Shape. Subtyping is

transitive, so Circle is a subtype of the (implicit) superclass of Circle, Object.

Since a subclass inherits all the fields and methods of its superclass, it is safe to use an instance

of a subclass anywhere an instance of the superclass is required. For example, if we have
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a method declared as void m(Shape x) {...}, it is safe to call m with a Circle object as

a parameter, since any operation that m can perform on a Shape can also be performed on

a Circle. This property of object oriented languages is known as subsumption. It can be

expressed formally by the subsumption type rule:

` T′ <: T ` e : T′

` e : T

(T-Subs)

Where e is an expression and T and T′ are types.

According to Cardelli and Wegner’s classification of polymorphism [27], the above description of

subtyping supports inclusion polymorphism. In a monomorphically typed language, a function

or procedure and its operands (formal parameters) have a unique type. Thus, a monomorphic

function can only be applied to objects with a specific and unique type. Polymorphically typed

languages allow functions and their operands to have multiple types; functions are generic since

they can be applied to objects with different types. Cardelli and Wegner split polymorphism

into universal and ad-hoc polymorphism; universally polymorphic functions can be applied to

an infinite set of types, whereas ad-hoc polymorphic functions can only be applied to a finite

set. Universal polymorphism is further separated into parametric polymorphism (described in

section 2.2) and inclusion polymorphism; ad-hoc polymorphism consists of overloading (for

example, two methods in a single class may have the same name but take parameters with

different types) and type coercions (for example, a int may be used as an float), both are

found in many languages, including Java, but are beyond the scope of this thesis.

Inclusion polymorphism is so called because an object may belong to several non-disjoint1

types, therefore, types may be included inside one another. For example, the type Circle is

included in type Shape since any object with type Circle also has type Shape.

1as opposed to parametric polymorphism
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2.1.2 Featherweight Java

Featherweight Java (FJ) [53] is a minimal, functional calculus that includes, or can model, all

the important features of the Java programming language and type system; it is a strict subset

of Java. The formal calculi presented in this thesis all extend FJ in some way.

FJ includes classes, methods, fields, and constructors (constructors are simplified in later ver-

sions of the calculus such as Wild FJ [60]). A method includes a single expression which may be

a field access, method invocation, variable access, creation of an object (new), or a cast (omit-

ted from some later systems). Types are class names, and subtyping is the reflexive, transitive

closure of declared subclassing.

In this thesis, we use and adapt the notation of FJ: we use ∅ to denote the empty sequence,

x to denote the sequence x0, x1, ..., xn, commas are used to concatenate two sequences,

and it is implicitly assumed that concatenation of two sequences of mappings only succeeds

if their domains are disjoint. Our use of the overbar notation is slightly different to that of

FJ (and hopefully more natural), in FJ, x y and ` x <: y are used to denote a sequence

of pairs and a sequence of relations, we prefer x y and ` x <: y, since we believe the FJ

notation (in the first case) could be interpreted as x0, x1, ..., xn, y0, y1, ..., yn, rather

than x0 y0, x1 y1, ..., xn yn. FJ makes heavy use of substitution, denoted [e/x]e′, which

means replace all free occurrences of x in e′ with e.

To keep the type rules syntax directed, subsumption is handled implicitly — there is no sub-

sumption rule. Instead, type checking assigns an expression its minimal type2; types are com-

pared by subtyping rather than equality. For example3,

fields(C) = T f;

Γ ` e : T′ ` T′ <: T

Γ ` new C(e) : C

(FJ-T-New)

2A minimal type can always be found, and is always unique, in FJ.
3Here, and throughout this thesis, we adapt the others’ notation for the sake of consistency.
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At runtime, objects are represented by a new expression, where all parameters to the constructor

are values (in FJ, values are only objects), new C(v). Since FJ is a functional calculus, there

is no need for a stack or heap.

2.1.3 Type Safety

A programming language is type safe (aka type sound) if well-typed programs cannot go wrong.

For formal languages this usually means that well-typed programs cannot get stuck. Being in

a stuck state means that a program cannot be further reduced, but is not a final value of the

language.

In Java and other object-oriented languages, type safety is taken to mean that only fields or

methods that exist will be accessed; there will be no ‘method not found’ errors. In FJ, the

standard definition of type safety implies the ‘Java’ meaning because the operational semantics

demands that fields or methods exist; a program that involves accessing a field or method that

doesn’t exist would get stuck — none of the reduction rules could be applied.

Type safety is usually proved by proving progress and preservation properties [96]. Progress

means that any well-typed term is not stuck, that is, can be further reduced or is a value;

formally (we use ; to mean “reduces to”):

e:T⇒ (∃e′st e ; e′) ∨ (∃v st e = v)

Preservation means that reducing a well-typed term results in a well-typed term; usually preser-

vation states that the type of the resulting term is the same as, or a subtype of, the type of the

original term; formally:

e:T ∧ e ; e′ ⇒ (e′:T′) ∧ (T′ <: T)

Preservation is also known as subject reduction and is usually the more interesting property

to prove. Preservation can be proved by structural induction on the derivation of the type

checking judgement (e:T) or of the reduction (e ; e′); the latter is more common and is used
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in this thesis. Inversion lemmas are used to relate the premises of type rules to the conclusion of

the typing derivations of e, e′, and sub-expressions, these must take into account subsumption

if it is used in the system. Featherweight Java and similar languages (including those in this

thesis) make heavy use of substitution, thus substitution lemmas are necessary and widely used

in preservation proofs.

2.2 Parametric Types

Suppose a programmer wishes to write a simple container class; first let us consider an untyped

version, using * for the type of the object in the container:

class Box {

* datum;

* get() {

return datum;

}

void set(* x) {

datum = x;

}

}

In early versions of Java, the programmer could write a different class for each type, for example

a ShapeBox, where * is replaced by Shape, StringBox, IntegerBox, etc. However, there are

then many copies of nearly identical code with no reuse. This is bad software engineering

practice. Alternatively, the programmer could use Object instead of *, as in the Java libraries.

This enables reuse, but forces the programmer to use a dynamic cast whenever an item is

removed from the list. This can result in performance degradation and in runtime errors

(ClassCastException in Java), compromising the static safety of the language.

In a parametrically polymorphic type system, type variables may be used in the definition of

a type; such a polymorphic type is instantiated by providing actual type parameters. This

enables reuse without requiring casts.
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In section 2.2.1 we describe generics, the implementation of parametric polymorphism in Java

and C#. This is followed by some discussion of including subtype variance in generic systems,

including virtual types, an alternative to parametric polymorphism, in section 2.2.2.

2.2.1 Java Generics

In Java, parametric polymorphism is implemented by generics [14, 16, 47]. Classes, types, and

methods may be parameterised by formal type parameters; actual type parameters are provided

when a class is instantiated or a method is called. Writing the box example using Java generics

gives us:

class Box<X> {

X datum;

X get() {

return datum;

}

void set(X x) {

datum = x;

}

}

Box is a generic class and X is its formal type parameter. The box can be instantiated to be a

box of shapes (Box<Shape>) or a box of strings (Box<String>), and so forth; Shape and String

are actual type parameters.

By using generics, the programmer only needs to write a class once, it can be instantiated with

many types. In each instantiation it is type safe. For example, in the case of Box<Shape>, the

programmer can only call set with objects of type Shape (or a subtype), and is returned an

object of type Shape by get. Thus, no casts are necessary.

Generics are useful for more than just collections such as boxes and lists; wherever a class

involves managing objects of a given type, then type safety and re-usability can be improved

by parameterising by the managed type. For example, class Class in the Java reflection API

is (since Java 5.0) a generic class, parameterised by the class that it reflects.
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Just as classes may be parameterised, so can methods. For example, a method, first, that

extracts the first element from a list, can be parameterised by the type of the list:

<Y> Y first(List<Y> y) {

...

}

void m(List<Shape> x)) {

Shape s1 = this.<Shape>first(x); //1

Shape s2 = this.first<x>; //2

}

Here, Y is the formal type parameter of the method first. In call 1, the actual type parameter

is Shape, first will expect a parameter of type List<Shape> and return an object with type

Shape. Java may infer certain type parameters in a method call; in call 2 no actual type

parameter is given, but Java will infer the parameter Shape from the types of x and y.

Classes and methods may have any number of type parameters, for example:

class Pair<X, Y> {

X datum1;

Y datum2;

...

}

This pair class has two formal type parameters. It may be instantiated as Pair<Shape, String>

(a pair of a shape and a string) or Pair<Shape, Shape> (a pair of two shapes), and so forth.

Generics in C# [1] are very similar to those described here for Java. The major difference is

in implementation; Java generics are implemented by erasure, all type parameters are erased

during compilation. Type parameters in C# are preserved at runtime. The advantage of the

C# approach is that operations that use types at runtime (such as casts or instanceof tests)

have access to the whole type rather than just the class name, and where dynamic checks are

required, these can check type parameters. Such a scheme was not adopted in Java since it

does not preserve backward compatibility.
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Parametric polymorphism is supported in C++ by templates [2, 86]. These have a similar

syntax to Java generics, but are very different. A C++ template, in effect, works by macro

expansion; it is compiled into a new class for each actual type parameter. This can lead to an

explosion in the number of classes, and therefore space requirements, and means that templates

cannot be type checked until they are instantiated. C++ does not support bounds on type

variables.

Inheritance and subtyping When we wish to inherit from a generic class we must provide

actual type parameters; these may include the formal type parameters of the inheriting class.

Thus, the following declarations are all legal.

class List<X> extends Object ...

class SpecialBox<X> extends Box<X> ...

class ShapeBox extends Box<Shape> ...

class DoublePair<X> extends Pair<X, X> ...

The above class declarations give rise to the following subtype relationships, by substituting

the actual type parameters of the subclass into the superclass declaration.

` List<Shape> <: Object

` SpecialBox<Shape> <: Box<Shape>

` ShapeBox <: Box<Shape>

` DoublePair<Shape> <: Pair<Shape, Shape>

Formal type parameters may be given upper bounds. Actual parameters must be subtypes of

their bounds and formal parameters are assumed to be subtypes of their bounds. For example,

<X extends Shape> void render{List<X> l} {

for (X x : List<X>) {

x.draw();

}

}

X has the upper bound Shape; valid actual parameters include Square and Triangle, but not

Object or Number (assuming the obvious class hierarchy). Within the method, X is a subtype
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of Shape, we may call the draw method on elements of l, since the type of the element must

be a subtype of Shape.

The bound of a type variable may be another type variable, as long as it is not a forward
reference, class C<X extends Shape, Y extends X> is legal in Java, but
class C<X extends Y, Y extends Shape> is not. A type variable may occur as a parameter
of the bound of any type variable (subject to the usual scoping rules); thus,

class C<X extends Shape, Y extends List<X>> ...

class C<X extends List<Y>, Y extends Shape> ...

class C<X extends List<X>> ...

are all legal declarations.

F-bounded polymorphism F-bounded quantification differs from simply bounded quantifi-

cation by binding the type variable in its bound as well as the scope of the quantification

[25].

Java generics support F-bounded polymorphism [16]. Type parameters may appear recursively

or mutually recursively in bounds. F-bounds are useful for modelling families of related classes.

For example, to give parametric types to the Observer pattern [44], we must use F-bounded

quantification of type variables as shown in figure 2.1

class Subject<S extends Subject<S, O>, O extends Observer<S, O>> {
private final List<O> observers = new ArrayList<O>();
void subscribe(O ob) { observers.add(ob); }
void update() {

for (O ob : observers)
obs.notify(this);

}
}

class Observer<S extends Subject<S, O>, O extends Observer<S, O>> {
void notify(S sub);

}

class Button extends Subject<Button, EventManager> ...
class EventManager extends Observer<Button, EventManager> ...

Figure 2.1: Observer pattern in Java.

Type variables in the classes Subject and Observer are F-bounded, S and O appear in their own

upper bounds; the classes Button and EventManager show how the classes are used and type
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variables instantiated. F-bounds are necessary because the two classes are mutually recursive,

we wish to refer to the Subject type from the Observer class and vice versa.

To show why this necessitates F-bounded quantification we will step through some simpler

designs and show how they fail: we begin by not using parametric types at all — why not use

notify(Subject sub) in Observer? This design does not work because there may be many

subclasses of Subject, some of which are incompatible with certain observers.

We could try to parameterise each class with a single type variable, representing the ‘opposite’

class, i.e., class Observer<S>...; we could then use S as the parameter type in notify. But,

this is not strong enough, we should give S a bound — class Observer<S extends Subject>....

However, we must do the same in the declaration of Subject, and now we must give a param-

eter to the bound of S — class Observer<S extends Subject<O>>.... Here, O is intu-

itively the type of this, but no such construct exists in Java and so we must use a type

variable. Furthermore, we know that this type variable must be bounded by Observer and

so we get class Observer<S extends Subject<O>, O extends Observer<...>>.... Mean-

while, we must extend the signature of Subject in the same manner, and we end up with

class Observer<S extends Subject<S, O>, O extends Observer<S, O>>..., both type pa-

rameters have f-bounds.

Invariant Subtyping

Subtyping between generic types is invariant with respect to their parameters. Generic types are

only subtypes if their parameters are identical (up to the substitution of actual for formal type

parameters due to subclassing). For example, List<Circle> is not a subtype of List<Shape>,

even though Circle is a subtype of Shape.

Invariant subtyping is required to maintain type soundness. To see why covariant subtyping

is, in general, unsound, consider the following example that uses the class declaration from

section 2.1 (a similar argument can be made for contravariant subtyping):
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List<Circle> listC = new ArrayList<Circle>();

List<Shape> listS = listC; //illegal in Java - covariant subtyping

listS.set(0, new Shape());

Circle c = listC.get(0); //bad, storing a Shape object in a Circle variable

c.countEdges(); //very bad, calling a method that does not exist

//countEdges is defined in Circle, but not Shape

Covariant subtyping is legal for Java arrays, Circle[] (an array of Circles) is a subtype of

Shape[]. In order to prevent errors, a dynamic check is inserted whenever the programmer

assigns into an array. Although this means that no non-existent field or method will be accessed,

static type safety is lost. For example,

Circle[] arrayC = new Circle[4];

Shape[] arrayS = arrayC; //OK

arrayS[0] = new Shape(); //statically OK, but caught with a dynamic check

Featherweight Generic Java

Featherweight Generic Java (FGJ) [53] extends Featherweight Java (see section 2.1.2) with

generics. Classes and methods are parameterised by formal type parameters. Actual type pa-

rameters are given when a type is instantiated or a method is called. FGJ lacks type parameter

inference (found in Java), all type parameters must be explicitly stated.

Typing in FGJ has the form ∆; Γ ` e : T (we adjust the notation very slightly for uniformity

with the other systems in this thesis); e is an expression, T a type, Γ is a variable environment

which maps variables (x) to their types (T), ∆ is a type environment which maps type variables

(X) to their upper bound (type variables cannot be bounded by other type variables in FGJ).

Subtyping has the form ∆ ` T <: T′ and is reflexive and transitive. A type variable is a subtype

of its upper bound, given by ∆. Subclassing gives subtyping, given by the subclass hierarchy

and substitution of type variables. The subclassing rule in FGJ is4

4we use ¢ as a shorthand for extends
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class C<X¢ N> ¢ N {...}
∆ ` C<T> <: [T/X]N

(FGJ-S-Class)

Like FJ, FGJ is functional and so there is no need for a stack or heap in the dynamic semantics.

Any variables or type variables will have been substituted away before an expression is reduced.

2.2.2 Variant Subtyping

We have seen that in Java with generics, subtyping is invariant (section 2.2.1). Although in

general, invariant subtyping is required to maintain soundness, it is sometimes safe and desirable

to have variant subtyping.

Given that A is a subtype of B, subtyping is covariant if C<A> is a subtype of C<B>, contravariant

if C<B> is a subtype of C<A>, and bivariant if both results can be derived.

There are two categories of systems that support variance: those that support use-site variance

and those that support declaration-site variance. Declaration-site variance is the older of the

two variations; the variance of a type is specified when the class is declared; all instances of the

class have the same variance properties. Use-site variance allows the variance properties of a

type to be specified when the type is instantiated. Different instantiations of a single generic

type may have different variance properties.

In the next few sections, we describe some systems that support different forms of subtype

variance. The solution in Java is to use wildcards, a form of use-site variance that supports

co-, contra-, and bivariance; wildcards are covered in section 2.4.

Declaration-Site Variance Annotations

Formal type parameters may be decorated with variance annotations, this gives declaration-

site variance [8]. Usually, + denotes covariance in the annotated parameter and - denotes

contravariance. For example, we could write a covariant box as:
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class CoBox<+X> {

readonly X datum;

X get() {

return datum;

}

}

We can instantiate CoBox<Square> and, thanks to the variance annotations, it is a subtype of

CoBox<Shape>. However, it would be unsafe for this class to include a set method, or allow field

assignment to datum. In this way type safety is maintained. If a type parameter is covariant, it

cannot appear in contravariant position (i.e., method parameter types or non-read-only fields);

if it is contravariant, it cannot appear in covariant position (i.e., in method return types or

fields).

Declaration-site variance annotations are found in several programming languages including

POOL [8], Smalltalk [15], the CLR [43] (and C# from version 4.0), and Scala5 [3, 71]. They

have been proposed for Eiffel [35] and C# [42].

Reasoning about variance is often a complex and difficult task, and the declaration-site approach

has the advantage that it is the library designer (usually a more expert programmer), rather

than the client, that must consider the variance of types. On the other hand, Declaration-site

variance is less flexible than use-site variance [42, 54]; once a class has been written it is not

possible to change its variance properties without changing the class. Furthermore, it tends to

lead to duplication of classes and interfaces, since a programmer often has to write co-, contra-,

and invariant interfaces for each generic class. This gets even worse if there are multiple type

parameters, the number of interfaces required to cover all the different combinations of variance

rises exponentially with the number of parameters.

Variance and Generalised Constraints Generics in C# are invariant (as of version 2.06);

declaration-site variance with constraints on type variables [38] has been proposed [42] as an

extension. The variance annotations part of the extension follows the description given above.

5Scala also supports virtual types (see section 2.2.2) which support subtype variance; in fact, Scala’s variance
annotations are treated as syntactic sugar for virtual types [71].

6Declaration-site variance is rumoured to be present in the forthcoming version 4.0



2.2. Parametric Types 42

In addition, constraints involving type parameters may be placed on methods and classes.

These constraints declare a subtype relation involving formal type variables. For example, the

constraint Shape ≤ X constrains X to be a supertype of Shape. If a method is constrained,

then the constraint only has to hold in order to call that specific method. Constraints may

contain other type variables and may be recursive and mutually recursive.

Generalised constraints make declaration-site variance more flexible. For example [42], a co-

variant list cannot usually allow elements to be set or appended, since the element type of

the list must appear in contravariant position in these methods. Using generalised constraints,

a functional7 append method can be declared that is type safe and can be used on a co-

variant list. A list class declared as CoList<+X> may have an append method with signa-

ture CoList<Y> append<Y>(Y datum) {...} where X ≤ Y. The constraint in the signature

means that Y must be a supertype of the element type of the list, X. The method returns a new

list with type CoList<Y> with the element datum appended. For example, we could append

a Shape to a CoList<Square> resulting in a CoList<Shape>. This is safe since each element

in CoList<Square> is at least a Square, and, therefore, at least a Shape, as is the element we

append.

Existential Types in Pizza

Pizza [70] is a precursor of GJ [16] and Java generics. Parametric types in Pizza are very similar

to those in Java and GJ. The primary difference8, is that Pizza allows more type parameter

inference than Java. To support inference of type parameters, Pizza supports existential types.

To see why existential types are required, consider the following example [70]:

List<String> l = ...;

Object o = l;

int s = ((List)o).size{};

7That is, the method returns a copy of its input with an appended element, rather than appending directly
to the input.

8Pizza also supports higher order functions and algebraic types.
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The interesting part of the example is the cast. In Pizza, the programmer does not need to

give the parameters of a type in a cast — only List is required, not List<String>, the type

parameter is inferred. But, in order to infer List<String>, the compiler would have to check

that every element of the list is a String. Instead, the compiler gives the result of the cast the

existential type ∃X.List<X> which signifies that the object is a list of some type, but exactly

which type is unknown.

Existential types are used only in type checking and cannot be written by the programmer.

Pizza existential types are bivariant types, albeit types to which the programmer does not have

access. We discuss how existential types are type checked in Pizza in section 2.3.7.

Raw Types

A raw type in Java 5.0 [47, 14, 16, 52] is a generic type without type parameters, for example

Box. Raw types facilitate interaction between generic and non-generic (in particular, legacy)

code. In the box example, the get and set methods can be called as if the parameter and

return types are Object. However, unlike Box<Object>, raw types enjoy subtype variance,

Box<Shape> is a subtype of Box. In fact, any parameterised box is a subtype of the raw box;

in this way, raw types behave like unbounded wildcard types (see section 2.4). Unlike wildcard

types, Box is a subtype of Box<Shape> or any other parameterisation. This is not type safe and

so a dynamic check is inserted to prevent runtime errors and a compile-time warning is given

(this would be an error in the case of a wildcard type). The language designers thought that

this flexibility, for the sake of backward compatibility, was more important than strict static

type safety [14].

Virtual Types

Virtual types [51, 61, 87, 89] are an alternative to parametric polymorphism. A virtual types

system allows a class to have type members (as well as fields and methods), and these may

be overridden (thus, they are virtual, in the C++ sense). This gives inherent covariance. We
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demonstrate how to model our Box example using virtual types in figure 2.2.

class Box {
type X; //a virtual type X
X datum;
X get() { return datum; }
void set(X x) { datum = x; }

}

class ShapeBox extends Box{
type X < Shape; //X is restricted,

//Shape is an upper bound on X
}

class SquareBox extends Box {
type X = Square; //X is bound to Square

}

Figure 2.2: The Box example using virtual types.

The syntax type X in class Box introduces the (unbounded) type member X to a class. The type

member X is inherited in ShapeBox, it is restricted to be a subtype of Shape by type X < Shape.

It is also inherited in SquareBox, but in this case it is bound to Square. Due to subclass-

ing, SquareBox is a subtype of ShapeBox, this corresponds to the covariant relationship,

Box<Square> is a subtype of Box<Shape>.

Virtual types have type safety issues; they are affected by the same problems that afflict arrays

in Java (see section 2.2.1). There have been several proposed solutions, some systems insert

dynamic checks [61, 87], others restrict instantiation of classes to those with bound type mem-

bers [51, 89] (in our example, SquareBox could be instantiated, but ShapeBox and Box could

not), and some distinguish between exact and variant types [17].

Virtual types are more verbose than parametric types when modelling collection classes. How-

ever, they have advantages for modelling families of classes. For example, the Observer pattern

[44] can be concisely described without the complicated F-bounds necessary for the parametric

version given in section 2.2.1, this is shown in figure 2.3. In this example, we assume that there

is a List class defined using virtual types in the manner of the Box class above. Note that

OList is an inner class that uses a virtual type, it is not a virtual class [61, 41].

Structural virtual types [88] are an extension to virtual types that combine the advantages of

virtual types and parametric polymorphism. The type members of a class are extracted into a
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class Subject {
type O;

private final OList observers = new ObList();
void subscribe(O ob) { observers.add(ob); }
void update() {

for (O ob : observers)
obs.notify(this);

}

class OList extends List{
type X = O;

}
}

class Observer {
type S;

void notify(S sub);
}

class Button extends Subject {
type O = EventManager;

...
}

class EventManager extends Observer {
type S = Button;

...
}

Figure 2.3: The Observer pattern implemented using virtual types.

separate block (delimited with square brackets) and contribute to subtyping. For example, we

can rewrite the above box example using structural virtual types as:

class Box [X] {

X datum;

X get() { return datum; }

void set(X x) { datum = x; }

}

A box of squares is represented as ShapeBox[X = Square], ShapeBox[X < Shape] restricts X

to a subtype of Shape. Subtyping follows from restriction of bounds (Box[X < Square] is a

subtype of Box[X < Shape]) and binding (Box[X = Square] is a subtype of Box[X < Shape]).

Type members are bound or restricted where types are instantiated. Structural virtual types

thus support use-site variance (in contrast to regular virtual types). Structural virtual types



2.2. Parametric Types 46

are statically safe, unsafe method calls and field assignments are forbidden (such as calling set

on an object with type ShapeBox[T < Shape]).

The authors of [88] note that structural subtyping of type parameters could be used in a para-

metrically polymorphic language to support use-site variance (without the modelling advantages

of virtual types). This inspired variant parametric types [54], the first rigorously investigated

system to support use-site variance.

Variant Parametric Types

Variant parametric types [54] support covariance, contravariance, and bivariance in a systematic

and safe way. In comparison to structural virtual types, variant parametric types offer support

for contravariance and a syntax more natural to parametric types. Variant parametric types

evolved into Java wildcards; a comparison between the two systems is made in section 2.4.5.

Variant parametric types extend Java generics by allowing actual type parameters to be an-

notated with symbols to denote variance: +T denotes a covariant type parameter, i.e., T or a

subtype of T; -T denotes a contravariant type parameter, i.e., T or a supertype of T; *T (or

just *, since in this case T is unimportant) denotes a bivariant type parameter, i.e., any type.

The formal grammar of variant parametric types is (◦ is used to annotate an invariant type

parameter):

v ::= ◦ | + | - | * variance annotations
N ::= C<vT> class types
T ::= X | N types

Using a variance annotation restricts the members of a class that are available. The user of a

variant parametric type cannot access members where a covariant type parameter appears in

contravariant position (i.e., in method parameter types); nor members where a contravariant

type parameter appears in covariant position (i.e., in method return types and field types).

If a type parameter is bivariant, then a member in which it appears cannot be accessed. For

example, given the generic Box class from section 2.2.1, a variable of type Box<+Shape>, has
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datum and get() available (both would have type Shape), but not set(). A variable of type

Box<-Shape> only has set() available and nothing can be accessed from a variable of type

Box<*>. More usefully, in a List<*> the size() method can be accessed because it takes no

parameters and returns an int. Intuitively, member restriction means that for any generic class

C<X>, instances of C<+T> are read-only with respect to X, and instances of C<-T> are write-only.

Variant parametric types support variant subtyping: type parameters marked + permit covari-

ant subtypes, those marked - permit contravariant subtypes, and * permits any parameterisa-

tion as a subtype. The following are all legal (these subtype relationships can be represented

diagrammatically, see figure 2.4):

` Box<Shape> <: Box<+Shape>

` Box<Shape> <: Box<-Shape>

` Box<Square> <: Box<+Shape>

` Box<Object> <: Box<-Shape>

` Box<+Square> <: Box<+Shape>

` Box<-Object> <: Box<-Shape>

` Box<Square> <: Box<*>

` Box<Shape> <: Box<*>

` Box<Object> <: Box<*>

Variant parametric types are never subtypes of invariant parametric types (i.e., regular generic

types). So, for example, Box<+Shape> is not a subtype of Box<Shape>. Variance annotations

cannot be mixed across subtypes, so Box<-A> and Box<+B> will never be subtypes, in either

direction, for any A and B. This principle extends to bivariant types, Box<+A> and Box<-A> are

not subtypes of Box<*> for any A.

To see why the member access restrictions guarantee soundness, we look in detail at some of

the subtype relationships given above. By subsumption, an object with type Box<+Shape> may

have type Box<Square>, in this case calling get and returning a Shape is safe because Square
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Figure 2.4: Subtype relationships between variant parametric types.

is a subtype of Shape. However, calling set could be unsafe if called with a Shape parameter.

Likewise, a variable with type Box<-Shape> may contain an object with type Box<Object>.

Calling set(new Shape()) is safe because Shape is a subtype of Object, but it is unsafe to

call get and expect a Shape, since our box may contain objects with any type.

By annotating actual type parameters, variant parametric types allow the variance of a con-

tainer to be decided when it is instantiated. Different instantiations of a generic class may be

invariant, covariant, etc. This means that reusability is increased and the user can decide on the

trade-off between flexibility of typing and availability of members that is entailed by the differ-

ent kinds of variance. For example, the single definition of the box class (section 2.2.1) is enough

to generate in-, co-, contra-, and bivariant types (for example Box<Shape>, Box<+Shape>,

Box<-Shape>, Box<*>), this would require four class definitions using declaration-site varia-

tion.

Variant parametric types have been formalised as an extension to FGJ; this formalisation is

influenced by work on existential types and is discussed in section 2.3.7. Variant parametric
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types have also been formalised using flow analysis [28]; this approach avoids existential types.

2.3 Existential Types

Existential types are a form of polymorphic type, they are based on the existential quantification

of logic. Their principal use is in modelling abstraction. There have been many different

formulations of existential types [26, 27, 49, 64, 74, 75]; although the concepts are similar, they

often differ in the details of their syntax and formalisation.

Existential types were first investigated by Girard [46] in the context of proof theory in logic.

Girard discovered a system called System F (also independently discovered by Reynolds as a

type system [80]), a polymorphic extension of the typed lambda calculus. Existential types

have been investigated as an extension to System F [27], and can be encoded within it [74, 45].

Abstract types (synonymously, abstract data types) support abstraction and modularisation in

the type system of a programming language. An abstract type declaration binds an abstract

interface to an implementation. Abstraction is provided by limiting access to the implementa-

tion; only the operations present in the interface may be used outside the declaration. Mitchell

and Plotkin [64] discovered that abstract types in programming languages could be given ex-

istentially quantified types, taken from logic. Existential types have also been used to model

modules [27] and objects [75]. More recently, they have been used for subtype variance in

parametrically polymorphic object-oriented languages. [54, 60]

The first programming language with existential types was SOL [64], a notational variant of

Girard’s System F, and an extension of the polymorphic lambda calculus. To support existential

types, SOL extends the lambda calculus with pack and abstype (unpack) expressions.

2.3.1 A Language with Existential Types — Fun

We will describe Fun [27], an adaption and extension of SOL and the foundation for nearly all

existential type systems developed since. We prefer to describe Fun rather than SOL because
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it is more typical of existential types systems and is conceptually clearer.

In Fun, a type specification for an expression with existential type has the form e : ∃X.t(X),
where e is an expression, X is a type variable, and t(X) is a type expression. This may be read as

“there exists some type X, such that e has type t(X)”. In general, we use upper case characters

(or capitalised strings) for types and lower case for values, ∃ for existential quantification, a

full stop (‘.’) to separate the quantifying from the quantified parts of a type, → for function

types, 〈 and 〉 to mark a pair or tuple, and × to denote pair or tuple types. Relations and

judgements always have the highest precedence, so, for example, ∆ ` ∃∆′.T <: T′ could be

written explicitly as ∆ ` (∃∆′.T) <: T′.

The simplest example of an existential type is ∃X.X, where for any expression, there is a type,

X, such that the expression can be given the type X. However, variables with such a type can

only be passed around and cannot be used, because, in effect, we have no information about

them. More complicated existential types allow the programmer to perform some operations on

variables. For example, a value with type ∃X.X×X → int (with full bracketing: ∃X.(X×(X →
int))) is a pair of a variable with some type, and a function that takes a parameter of that

type and returns an integer; we can therefore apply the function to the variable and obtain an

integer. The syntax for the existential types we use in this section is:

R ::= X | T→T | int | T×T non-existential types
T ::= R | ∃X.R unbounded types
T′ ::= R | ∃X≤T.R bounded types

In an existential type ∃X.T, the type variable X is bound in T. Thus, X can be renamed in

T (alpha conversion); ∃X.T is considered equivalent to ∃Y.[Y/X]T. As with lambda binding,

Barendregt’s variable convention [10] may be used with existential quantification; that is, we

may assume that bound and free type variables are distinct.

Packing and unpacking In traditional treatments [27, 64, 74], existential types are in-

troduced and eliminated explicitly in the expression syntax. An existential type is intro-

duced using a pack expression (also known as a close expression); in Fun, this takes the form
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pack[X = T in t(X)](e), where e is the expression to be packed, T is the witness type (the

type hidden by X), and t(X) is a type expression that is the interface of the package created

as a result of the pack expression. For example, the pair 〈2,3〉 with type int×int can be

abstracted to pack[X = int in X×X](〈2,3〉) with type ∃X.X×X; int is the witness type and

is hidden by X9.

A value with existential type must be unpacked (or opened) before it can be used; the syntax

open p as x in e is used in Fun, where p is a package with existential type, x is a label for

the value portion of the contents of the package, and e is the scope in which x can be used.

For example, open p as x in (fst x)10, where p has type ∃X.X× X, takes the first value in

the tuple contained in p11.

Continuing the ∃X.X×X → int example; given a float, x, and a function, round of type

float→int which takes a float and returns the nearest integer, we can create a package, p,

with type ∃X.X×X→ int, by packing a tuple of these entities:

p = pack[X = float in X×X→ int](〈x, round〉)
In order to use p we must unpack it, for example, open p as x in ((snd x) (fst x)). From

the structure of the existential type, we can see that the second element of p is a function, with

result type int, that can be applied to the first element; thus, the whole expression will have

type int.

Bounded quantification Unbounded existential types (as described above) hide all infor-

mation about the witness type. Bounded existential types [27, 73] give partial information

9In previous work [24] and in the later chapters of this thesis, we adopt the syntax
close e with X hiding T. The only significant difference in our approach is that we do not specify an
interface type (t(X)). We can derive this type from the type of e, t(X) = [T/X]U, where U is the type of e. The
Fun approach is a little more flexible, in that it allows for the ‘partial hiding’ of types. For example, the Fun
expression pack[X = T in X×T](e) can take an expression (e) with type T×T and pack it to a package with
the type ∃X.X×T; only one of the occurrences of T is hidden. This is not possible with our notation, but such a
facility is not required to model Java wildcards.

10This expression does not actually type check according to the standard rules. It would have type X, except
that this type variable escapes the scope of unpacking. A pack expression can be used to make the expression
type check: open p as x in (pack [X=X in X](fst x))

11In the later chapters of this thesis and in previous work [24], we also give a label to the witness type in
the scope of the unpack expression (since we may have to refer to the type in the program syntax, for example
new C<X> or this.<X>m(x); this cannot happen in Fun), thus we use the syntax open p as x,X in e. As we
will see in section 2.3.2, both the witness type (T in pack[X = T in X×T](e)) and the type variable that hides
it (X) must be known in the reduction rules. In Fun, both are given in the pack expression; in our notation, X
is given in the open expression, and T in the close expression.
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about the witness type. Early work on existential types allowed the quantified type variable

to have an upper bound [27], work on wildcards also requires the use of lower bounds [60]. A

bounded existential type in Fun has the form ∃X ≤ T.t(X), where T is an upper bound. Any

type that can be hidden by X must be a subtype of T; therefore it is safe to make use of the

assumption that X is a subtype of T.

2.3.2 Static and Dynamic Semantics of Existential Types

In this section we show how programs using existential types are type checked and evaluated.

We discuss the type rules of Fun without bounds; adding bound checking to these rules is

fairly straightforward; the bound checks are only interesting in subtyping. Since no dynamic

semantics have been given for Fun [27], we adapt them from System F<: [74].

Typing

∆; Γ ` e : [T/X]U

∆; Γ ` pack[X = T in U](e) : ∃X.U
(Fun-T-Pack)

∆; Γ ` e : ∃X.U ∆, X; Γ, x:U ` e′ : T
X 6∈ fv(T)

∆; Γ ` open e as x in e′ : T

(Fun-T-Open)

In these rules, Γ maps variables to types and ∆ is a list of type variables. The function fv(T)

returns those type variables that appear free in type T.

A pack expression wraps a subexpression (e) to an abstract package. Its type is the type of e

with the witness type (T) hidden by a type variable, X. The premise of the rule gives that e

has the interface type U without T being hidden.

An open expression takes an abstract package (e) and unpacks it in the scope of the body of

the expression (e′). This is done by using a fresh variable (x) to hold the unpacked package.

The quantifying type variable from the type of e must be remembered when judging e′, since

it may appear free in the type of x. The open expression is given the same type as e′, the third
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premise ensures that the unpacked type variable cannot escape its scope.

Subtyping

There are two variations on subtyping between existential types, these are known as the kernel

and full variants [74] (in these rules, ∆ maps type variables to their bounds):

∆, X≤U ` T <: T′

∆ ` ∃X≤U.T <: ∃X≤U.T′
(Fun-S-Kernel)

∆ ` U <: U′ ∆, X≤U ` T <: T′

∆ ` ∃X≤U.T <: ∃X≤U′.T′

(Fun-S-Full)

To compare the bodies of existential types, which may include type variables bound by quantifi-

cation, these rules move the quantifying variables into the judging environment. This requires

quantifying parts of the types to be related: in the kernel variant they must be identical, while

in the more flexible full variant, the type variables must be identical, but their bounds may be

subtypes. The more precise bound (U) is used to extend the type environment in the second

premise. As we will see in section 3.3.2, the full variant of subtyping corresponds most closely

to subtyping in Java with wildcards.

Operational Semantics

Pack and unpack expressions may be reduced together to eliminate both expressions (we use

e ; e′ to mean e reduces in one step to e′):

open (pack[X = T in U](v)) as x in e ; [v/x, T/X]e

(Fun-R-Open-Pack)

The pack sub-expression packs v creating an abstract package where the witness type Y is

hidden by X, the open expression unpacks this package, re-exposing v and T within the scope

of the body of the open expression, e. Within e, the unpacked package is referred to by the
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variable x. The reduction rule reflects these intuitions by replacing x with v and X with T in e,

allowing it to be reduced further since the free variables due to the open expression have been

eliminated.

2.3.3 Open existential types

A modern alternative to formulating existential types is to separate packing and unpacking into

more atomic operations. In F. [65], unpacking is split into opening and scope restriction. This is

done so that defining a scope for an opened existential type variable is separated from the actual

opening (existential types are opened into the environment and are known as open existential

types). Packing is split into existential introduction, open witness definition, and coercion;

this is done to reduce verbosity, by separating the creation of types from the abstraction of

expression types, the witness type can be specified more succinctly. Existential introduction

creates an existential type, open witness definition specifies which part of the hidden type are

abstracted, and coercion gives a more abstract type to an expression.

The consequence of more atomic operations for the introduction and elimination of existential

types is that module systems can be more closely modelled. By deconstructing unpacking,

abstract types can be made available at any scope or freely throughout a program, this fits

more closely to how modules are used. Open witness definition corresponds closely to type

abstraction of modules. It would be interesting future work to examine how (and if) the finer

grained operations of F. correspond to wildcard types in Java.

2.3.4 Decidability

Type checking in the full variant of System F<: is undecidable [73] because subtyping is un-

decidable. This is shown by reducing the halting problem for two counter Turing Machines to

subtype checking. However, subtyping is decidable in the kernel variant of System F<: [73].

Several other restrictions of full System F<: also make subtyping decidable.
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These results extend to System F<: extended with existential types [74]: the kernel variant is

decidable, the full variant is not. Furthermore, there is only a minimal typing12 algorithm for

the kernel variant of System F<: with existential types. It has been shown that no algorithm

can give a minimal type to open expressions in the full variant of System F<: [45].

In the next few sections we discuss some of the applications of existential types.

2.3.5 Modelling Abstract Types

We use a stack of integers to show how existential types model abstract types. We wish to

model a stack with functions empty (to provide an empty stack), push, and pop, and where the

implementation is left abstract; the implementation should not concern clients of the stack. The

abstract stack has the type ∃X.((empty:X) × (push:(X×int)→X) × (pop:X→(int×X))).
In this type, X hides the implementation type; the abstract interface consists of a record of

functions: empty returns a stack, push takes a stack and an integer and returns a stack, pop

takes a stack and returns a stack and an integer.

To create a stack we must provide a concrete implementation and then pack it. Assuming that

we have functions lEmpty, lPush, and lPop that implement empty, push, and pop using lists,

we create an abstract stack using

pack[X = List in (empty:X) × (push:(X×int)→X) × (pop:X→(int×X))]
〈lEmpty, lPush, lPop〉

To use this stack we must first unpack it, we assume that x has type

∃X.((empty:X) × (push:(X×int)→X) × (pop:X→(int×X))))

(we simplify the example by using pattern matching notation in the open expression):

12A minimal type is the most precise type that can be given to an expression. We define “most precise”: if A
is a subtype of B then A is more precise than B. In languages with forms of polymorphism other than subtyping,
there are other definitions of “most precise”.
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open x as ((stEmpty:st)× (stPush:(st×int)→st) × (stPop:st→(int×st))) in

(fst (stPop (stPush 〈(stPush 〈stEmpty, 3〉), 5〉)))

Executing this code will give the result 5 (we take an empty stack and push on 3, then 5, then

pop off the top of the stack, which is 5). Note that we unpack the abstract stack as soon as

possible, and then use its components several times.

Rather than using explicit unpacking, the dot calculus [26] models abstract types more di-

rectly. A dot is used to unpack and access elements of an abstract package. This system is

fundamentally related to earlier work on existential types [27, 64].

The dot calculus [26] has abstract packages with existential type which are created by a ‘pack’

expression, similarly to Fun. The code p.f accesses a field, f, in an existentially typed package,

p. This system is formalised by introducing two operators on packages, Fst and snd13. For

a package p = pack[X = T in U](e) (using the syntax of Fun [27], described above, which

varies slightly from that used in [26]), p.Fst gives the witness type of p, X, and p.snd gives

the value part, e.

The dot notation calculus can be translated to one that uses open notation and vice versa [26].

Both translations preserve typing and semantics; thus, the two calculi are equally expressive.

A more powerful version of the dot calculus also exists [26] where Fst and snd may be preceded

by any existentially typed expression (e.Fst and e.snd), rather than simply variable names.

This is motivated by programming language features such as nested modules. The authors

show that this extended calculus is more expressive than calculi that use explicit unpacking or

the original dot calculus.

ML Modules are an alternative abstraction mechanism to abstract types. A module is a self-

contained unit of code with an interface type. ML Modules have also been modelled using

existential quantification [82]; this formalisation does not use the standard mechanisms of

existential types such as packing and unpacking. A proposed extension [81] to ML uses open

13The slightly odd capitalisation is taken from [26], Fst is capitalised because it returns a type, whereas snd
returns a value.
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and pack expressions similar to those described earlier. These constructs operate over multiple

rather than single type variables, allowing quantification by many type variables at once (as in

Tame FJ, section 3.1).

2.3.6 Existential Types for Imperative Languages

Existential types and low-level pointer operations can cause problems when mixed. Cyclone

[49] is a type safe, C-like language that had such problems in its early development. In this

section we describe Cyclone’s problem and the solution.

In Cyclone, structs may be existentially quantified. Accessing data in existentially typed structs

involves pattern matching, which performs unpacking. The address of a field in a struct can

be matched using *x, where x is a variable into which the address is copied; this is called a

reference pattern. Thus, if we have a struct S with two fields, the pattern S(a, b) copies the

first field to a and the second to b; the pattern S(a, *b) copies the address of the second

component to b. If S has the existential type ∃X.(void (*f)(int, X), X a), i.e., consists of

a function f that takes an integer and a value of some type, and a value of the same type, then

in the scope of S(a, *b), the variable b will contain the address of the second field; it will have

type *Y, where Y is the unpacked witness type.

Since Cyclone is imperative, it allows assignment to variables, including those with existen-

tial type. Unfortunately, these features combine to produce an unsoundness. Continuing the

example [49],

void ignore(int x, int y) {}

void assign(int x, int *y) { *y = x; }

void f(int* ptr) {

struct S s1 = S(ignore, 0xabcd);

struct S s2 = S(assign, ptr);

let S(a,*b)<Y> = s2 in {

s2 = s1;

a(37,*b);

}

}
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Both s1 and s2 have the same type, but different witness types, namely int in s1 and *int in

s2. As in C, the assignment s2 = s1 copies the values of s2 into s1, this changes the witness

type from int to *int. Since a contains a copy of the pointer to assign it is unaffected by the

assignment. However, b contains the address of the second field of s2, so when s2 is updated,

b will point to the new value, in this case, the integer 0xabcd. When the function pointed to

by a is called, it is assign that is executed, but it is passed an integer where it expects an

address, thus an arbitrary location in memory can be overwritten.

To fix the problem, either assignment to unpacked existential types or using reference patterns

to match existential types must be forbidden [49]. We discuss why this problem does not affect

Java in section 3.3.2.

2.3.7 Existential Types for Subtype Variance

Recently, existential types have been used to support subtype variance in parametrically poly-

morphic object oriented languages. Parametric types (such as generic types in Java) must

support invariant subtyping (section 2.2.1). Several systems address this restriction (described

in sections 2.2.2 and 2.4); in this section we describe how existential types have been used to

model these solutions.

Pizza

Pizza [70] uses bounded existential types during type checking to support inference of type

parameters (see section 2.2.2).

Pizza is formalised as Mini-Pizza [70], a functional calculus that captures the extensions to Java

proposed in Pizza. Existential types may not be present in the surface syntax of Mini-Pizza

programs, but they may appear during type checking. In Mini-Pizza, many formal variables

may be quantified at once. For example, in Fun, we must use one quantifier per variable,

∃X.∃Y.〈X, Y〉; in Mini-Pizza, we can quantify several variables, ∃X,Y.Pair<X, Y>. The same

approach is taken in Wild FJ [60] and section 3 to formalise wildcards. Although, to the best of
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our knowledge, this issue has not been discussed in the context of Pizza [70], it had a significant

impact on our formalisation of wildcards, and is discussed in section 3.3.

There are no pack or unpack expressions in Mini-Pizza, instead packing and unpacking occurs

in the type and subtype rules. Packing is handled by the ∃ ≥ subtyping rule, and unpacking

by the ∃ ≤ subtyping rule and ∃ Elim type rule. We start by discussing the subtyping rules:

∆, ∆′ ` T <: T′ dom(∆′) ∩ fv(T′) = ∅
∆ ` ∃∆′.T <: T′

(Pizza-S-∃-≤)

∆ ` T <: [A/X]T
′

∆ ` A <: [A/X]B

∆ ` T <: ∃X≤B.T′
(Pizza-S-∃-≥)

T and T′ are types, X is a type variable, A and B are non-existential types and ∆ and ∆′ are

type environments, i.e., mappings from type variables to their upper bounds.

The rule Pizza-S-∃-≤ takes an existential type, ∃∆′.T, and finds a supertype, T′, of the

unquantified part T. To do this, ∃∆′.T is unpacked into ∆′ and T′, ∆′ is used to judge the

subtype relation between T and T′. To avoid free variable escape, T′ must not contain variables

bound in ∆′.

For example, consider ∃X≤Shape.Box<X> judged under ∆ = ∅; the first premise allows us to

find a supertype of Box<X> under {X≤Shape}; Shape is such a supertype and it does not contain

X; therefore, we can conclude that ∃X≤Shape.Box<X> is a subtype of Shape.

Pizza-S-∃-≥ packs a type T to an existentially quantified supertype ∃X≤B.T′. In the supertype,

X hide the witness types A; T must, therefore, satisfy the bounds on X.

For example, Box<Circle> is a subtype of ∃X≤Shape.Box<X>. The first premise is satisfied by

reflexivity because Box<Circle> = [Circle/X]Box<X>. We satisfy the second premise because

Circle is a subtype of Shape.

These rules perform the same function, and operate in the same way, as Fun-T-Open and

Fun-T-Pack in Fun (given in section 2.3.2). The difference is that the Fun rules are type rules

and the Pizza rules are subtype rules. Subtyping in Fun does not permit packing or unpacking
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of existential types. Subtyping between existential types (given by Fun-S-Full in Fun) is also

given in Pizza by these subtype rules.

Pizza-S-∃-≤ compares with Fun-T-Open. Both rules unpack a type and allow the unpacked

type to be used within a limited scope, and ensure that unpacked variables cannot escape

that scope. The first premise of Fun-T-Open finds an existential type for an expression

(∆; Γ ` e : ∃X.U), in Pizza, we start with an existential type. This existential type is separated

in the same way in both systems; in Fun, using X with ∆ to judge the type of a second expression

(∆, X; Γ, x:U ` e′ : T); and in Pizza applying the same concept to types rather than expressions,

that is, using subtyping rather than typing. The final premise of each rule is identical, it ensures

that no free variables escape via the result type or supertype, T′.

Pizza-S-∃-≥ compares with Fun-T-Pack. In Fun, we wrap an expression to pack it, in Pizza

we pack a type by finding a supertype; otherwise, the two rules are almost identical. The first

premise of Pizza-∃-≤ corresponds with the first premise of Fun-T-Pack (∆; Γ ` e : [T/X]U),

except that we have a subtyping, rather than a typing, judgement. We gave Fun-T-Pack in

the context of unbounded existential types, the version with bounds includes exactly the second

premise of Pizza-S-∃-≤.

The same pattern of packing and unpacking using subtype rules is found in JavaGI [94, 95]

(section 2.4.6). The subtyping rules in Pizza are, in effect, combined into the ‘env’ subtyping

rule of Wild FJ [60] (section 2.4.6) and Tame FJ (section 3.1); these two approaches to subtyping

are compared in section 5.2.3.

In Pizza, unpacking is also found in the type rule ∃ Elim, again, we adjust the notation for

uniformity,

∆; Γ ` e : ∃∆′.T
∆, ∆′; Γ ` e : T

(Pizza-T-∃-Elim)

Here, e is an expression and Γ is a variable environment, i.e., a mapping from variables to their

types. This rule allows an expression with existential type to be used without quantification.
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We must add the quantifying environment, ∆′, to the judging environment, ∆. For example,

if ∆; Γ ` x : ∃X.Box<X>, then we can derive ∆, X; Γ ` x : Box<X>.

Pizza-T-∃-Elim complements Pizza-S-∃-≤; Pizza-S-∃-≤ allows existential types to be un-

packed during subtyping, Pizza-S-∃-Elim allows expressions to be unpacked during typing.

There does not appear to be a corresponding rule to pack expressions in Mini-Pizza and so it

is unclear how ∆′ could ever be removed from a judging environment. For example, consider

the derivation of a call to a function with type ∀Y.Box<Y> → Box<Y>, a sketch of a possible

derivation (with bounds omitted) is:

∆; Γ ` x : ∃X.Box<X>
∆, X; Γ ` x : Box<X>

(Pizza-T-∃-Elim)

∆, X; Γ ` f(x) : Box<X>
(Pizza-T-Apply)

We would like to be able to pack the resulting type, i.e., be able to derive

∆; Γ ` f(x) : ∃X.Box<X>. Even though ∆, X ` Box<X> <: ∃X.Box<X> holds, it does not seem

to be possible to use this in the typing derivation to remove X from the left of the turnstile.

Raw Types

Raw types (section 2.2.2) behave like wildcard types, except that some type errors are de-

moted to warnings. Raw types behave like existentially quantified types [54, 52]. The only

formalisation of Raw Types [52] does not use existential types, although they were used to

gain an intuition for Raw Types’ behaviour. The correspondence between wildcard types and

existential types, described in section 2.4.1, also applies to raw types.

Variant Parametric Types

Variant parametric types [54] (section 2.2.2) are “existential types in disguise” [54]. Packing and

unpacking is used in the formalisation of variant parametric types. The correspondence is very
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similar to the one between wildcards and existential types14, discussed in detail in section 2.4.1.

Bivariant parametric types can be thought of as unbounded existential types and covariant

parametric types as bounded existential types. For example, Box<*> corresponds to ∃X.Box<X>
and Box<+Shape> corresponds to ∃X ≤ Shape.Box<X>.

To find a corresponding existential type for contravariant parametric types, we must introduce

lower bounds on existentially quantified type variables. To the best of our knowledge, this

idea has not been studied outside of the context of variant parametric types and wildcards.

The correspondence follows the same pattern as covariant types, for example, Box<-Shape>

corresponds to ∃X ≥ Shape.Box<X>.

Subtyping between variant parametric types corresponds to the full variant of existential sub-

typing (Fun-S-Full given in section 2.3.2). ` Box<+Square> <: Box<+Shape> corresponds

to ` ∃X ≤ Square.Box<X> <: ∃X ≤ Shape.Box<X>, derived from ` Square <: Shape. Con-

travariant parametric types behave in the same way, but subtyping is contravariant with re-

spect to the bounds. For example, ` Box<-Shape> <: Box<-Square> could be interpreted as

` ∃X ≥ Shape.Box<X> <: ∃X ≥ Square.Box<X>, from ` Square <: Shape.

Subtyping between variant and invariant parametric types is due to an implicit pack opera-

tion. Box<Square> is a subtype of Box<+Shape>, this corresponds to packing Box<Square> to

∃X ≤ Shape.Box<X> by hiding Square with X.

As with existential types, a variant parametric type must be unpacked before it can be used,

this is done during type checking, not by a dedicated expression. For example, a method call,

x.get(), on a variable with type x:Box<+Shape> corresponds to unpacking x and then calling

get on the opened variable, for example:

open x as y in

y.get()

Here, y will have type Box<Z>, where Z is a fresh type variable. As with existential types, the

introduced type variable (Z in the example) must not escape the scope of the open expression.

14It is noted [54] that a system with existential types syntax and explicit open expressions could be used to
provide a very expressive system of variance in a parametric, object oriented language.
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This is done by finding a Z-free supertype of Z. In the example, a suitable supertype is Shape.

This is the type that we would expect from the description of variant parametric types in

section 2.2.2. Sometimes, it is not possible to find a supertype with no free type variables. This

occurs when access to a member is restricted. For example, trying to call get on an object with

type Box<-Shape> can be thought of in the same way as above. However, this time there are

no supertypes of Z and so type checking fails; this is expected, access to get in Box<-Shape>

is forbidden.

Variant parametric types are formalised as an extension to FGJ [53]). In this calculus, open

and close operations (denoted ⇑ and ⇓, respectively) are used in the type and subtype rules to

unpack and pack variant parametric types.

The open operation has the form ∆ ` N ⇑∆′ N′, where N is a variant parametric type and N′ is

an invariant parametric type. N is unpacked to N′, this requires introducing fresh type variables

and these are recorded in ∆′. For example, ∆ ` Box<*> ⇑X Box<X>. This follows unpacking of

existential types, where ∃X.Box<X> can be unpacked to Box<X>.

The close operation has the form N ⇓∆ N′, and is the ‘reverse’ of the open operation, N is

an invariant parametric type that is packed to N′, a variant parametric type. ∆ records the

type variables in N that are abstracted by the close operation; N′ will not contain any of these

variables. Thus, the close operation can be used to find a supertype of N in which no free

variables escape their scope. For example, Box<X> ⇓X Box<*>. Again, this follows from the

existential types interpretation of variant parametric types.

As an example of how these operations work together, we sketch the derivation of type checking

for a field access expression. We assume that there is a class declaration class C<X> { C<X> f; }
and that the variable x has type C<+A>; fType looks up the type of a field, the type it is passed

must be invariant.

∆; Γ ` x : C<+A> ∆ ` C<+A> ⇑X≤A C<X>
fType(f, C<X>) = C<X> C<X> ⇓X≤A C<+A>

∆; Γ ` x.f : C<+A>
(VPT-T-Field)
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The open and close rules are also used in the subtype rule for subclassing. Subtyping be-

tween variant parametric types (corresponding to subtyping between existential types) is given

syntactically, without the use of open or close operations.

We compare variant parametric types with Tame FJ in section 3.1.

Wildcards Wildcards in Java may also be interpreted as existential types [90]. This corre-

spondence is used to formalise wildcards in Wild FJ [60] and in chapter 3 of this thesis. More

details of the correspondence are given in section 2.4.1.

2.4 Wildcards

Subtype variance in Java is given by wildcards [14, 47, 90, 60]. A wildcard type is a parameterised

type where ? is used as an actual type parameter, for example Box<?>. Such a type can be

thought of as a box of some type, where the wildcard is hiding that type. Where multiple

wildcards are used, for example Pair<?, ?>, each wildcard hides a potentially different type.

A wildcard may be given upper or lower bounds using the extends and super keywords

respectively. List<? extends Shape> is a list of some type where that type is a subtype

of Shape; Box<? super Circle> is a box of some type where that type is a supertype of

Circle. The bounding types may also have type parameters, including wildcards, so both

Box<? extends List<Shape> and Box<? extends List<?>> are valid types.

If a class declaration involves bounds on the class’s formal type parameters, then these bounds

are ‘inherited’ by a wildcard used as an actual parameter. For example, consider the following

class declaration:

class InheritBound<X extends Shape> {

...

}

If this class is instantiated with a wildcard, InheritBound<?>, then the Java compiler takes

Shape as the upper bound of the wildcard. If the wildcard is given a bound, then the stricter
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of the two bounds is used; for example, the upper bound of InheritBound<? extends Object>

is Shape, but the upper bound of InheritBound<? extends Circle> is Circle. It is therefore

possible for a wildcard to have both upper and lower bounds, e.g., InheritBound<? super Circle>

has bounds Circle and Shape; that is, the hidden type must be a subtype of Shape and a su-

pertype of Circle.

Wildcard types enjoy variant subtyping; upper bounds give covariance and lower bounds give

contravariance. So, where Circle <: Shape,

Box<? extends Circle> <: Box<? extends Shape>

Box<? super Shape> <: Box<? super Circle>

Non-wildcard types are subtypes of wildcard types according to similar variance rules (Wildcard

types are never subtypes of non-wildcard types),

Box<Circle> <: Box<? extends Shape>

Box<Shape> <: Box<? super Circle>

Unbounded wildcard types are bivariant, that is, both co- and contravariant,

Box<? extends Shape> <: Box<?>

Box<? super Shape> <: Box<?>

Box<?> <: Box<?>

A wildcard type can be used as a type parameter to give nested wildcard types; for example,

Box<Box<?>>, the actual parameter is the wildcard type Box<?>. In this case, the top level

type (Box<...>) is not a wildcard type and so has invariant typing properties. For example,

Box<Box<?>> is not a supertype of Box<Box<Shape>>. Such nesting can be extended to any

depth and may include bounds; List<Box<Box<Box<?>>>>, Box<Box<? extends Shape>>, and

Box<Box<? extends Box<Box<? extends Box<?>>>>> are all valid types.
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2.4.1 Existential Types for Wildcards

Existential types (section 2.3) can be used to understand and formalise Java wildcards [90, 60].

A wildcard type can be thought of as an existentially quantified type; for example, Box<?> can

be represented as ∃X.Box<X>. Many of the above observations about wildcard types can be

expressed using existential types: the scope of existential quantification (∃X.Box<X> rather than

Box<∃X.X>) expresses that a wildcard hides a single type and not potentially many types, the

uniqueness of quantified variables (for example, ∃X,Y.Pair<X, Y> rather than ∃X.Pair<X, X>

for Pair<?, ?>) reflects the uniqueness of wildcards, nested quantification (Box<∃X.Box<X>>
for Box<Box<?>>) reflects the invariance of nested wildcards — only top level quantification

gives rise to variant subtyping.

Bounds on wildcards can be thought of as bounds on the existentially quantified type variable,

thus Box<? extends Shape> corresponds to ∃X→[⊥ Shape].Box<X>. We use ⊥ as a lower

bound where the wildcard is unbounded below and Object where a wildcard is unbounded

above15. We will omit bounds in examples where they do not play an important part. We

take into account bounds inherited from the class declaration and represent the precise bounds

known to the type checker in our existential types. In the example from the previous section,

we would write InheritBound<?> as ∃X→[⊥ Shape].InheritBound<X>.

The major difference between type checking existential types and wildcards is that, in Java,

packing and unpacking are implicit. Similarly to traditional existential types, wildcard types

must be unpacked before they can be used (used in the Java sense means acting as the receiver

of a field access or assignment, or method call). However in Java, this unpacking is done

automatically without an explicit open expression. In Java this implicit unpacking is known as

capture conversion; for example, the type C<?> is capture converted to C<Z>, where Z is a fresh

type variable.

Subtyping between wildcard and non-wildcard types reflects packing of existential types. For

example,

15This is possible because unbounded wildcard types behave exactly like bounded ones. This is not the case
in variant parametric types [54].
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Box<Circle> <: Box<? extends Shape>

corresponds to

Box<Circle> <: ∃X→[⊥ Shape].Box<X>

This can be thought of as packing Box<Circle> to ∃X→[⊥ Shape].Box<X>, where Circle is

the witness type, hidden by X.

Subtyping between wildcard types reflects subtyping between existential types. For example,

Box<? extends Circle> <: Box<? extends Shape>

corresponds to

∃X→[⊥ Circle].Box<X> <: ∃X→[⊥ Shape].Box<X>

Which follows from the full variant of existential subtyping (see section 2.3.2).

We formalise the translation from wildcard types to existential types in section 3.2.

2.4.2 Wildcard Capture

Wildcard capture is the mechanism by which a wildcard is promoted to a fresh type variable.

This occurs most visibly at method calls: Tree<?> is not a subtype of Tree<X>, and yet the Java

code in figure 2.5 is legal. At the method invocation, the wildcard in the type of y is capture

converted to a fresh type variable, say Z, and the method invocation can then be thought of as

this.<Z>walk(y). In figure 3.8 we show how this example is type checked in Tame FJ.

As mentioned in section 2.4.1, capture conversion corresponds to existential unpacking [60, 90].
Using an explicit open expression, the above method invocation becomes:

open y as z,Z in

this.<Z>walk(z);



2.4. Wildcards 68

<X> List<X> walk(Tree<X> x) {...} {

List<?> walkAny(Tree<?> y)
this.walk(y);

}

Figure 2.5: Example 1.

Here it is clear where the fresh type variable Z comes from and how it is used16.

In the above examples we have written the type parameter to the method calls (Z). This can

always be done in Java generics without wildcards. However, if wildcards are used, then there

exists programs for which there is no source to source translation that produces a program with

all type parameters named. This is because the hidden type parameters of wildcards cannot

be named.

Wildcard capture may give rise to types during type checking that cannot be denoted using

the Java syntax, these types are expressible but not denotable. This is a serious obstacle for a

direct formalisation of Java wildcards using the Java syntax, because type soundness requires

typability of every step of the computation. This is the primary motivation for using existential

types to model Java wildcards. For example in figure 2.6, the method invocation at 1 is type

incorrect because the method compare requires a Pair parameterised by a single type variable

twice. Pair<?, ?> cannot be capture converted to this type because the two wildcards may

hide different types. Its existential type, ∃X,Y.Pair<X, Y>, makes this clear. The result of the

call to make at 2 has a type which is expressible but not denotable. The type checker knows that

the wildcards hide the same type (even though this cannot be denoted in the surface syntax)

and so capture conversion, and thus type checking, succeeds. This type can be denoted using

existential types as ∃X.Pair<X, X>. We show how this example is type checked in figure 3.9.

16In this case, the result of the method invocation has type List<Z>. This must be repacked to List<?> to
prevent the escape of Z. In Java this is done implicitly by subtyping; the fully explicit version of the method
invocation is:
xxxxopen y as z,Z in

xxxxxxxxclose (this.<Z>walk(z)) with X hiding Z;
The result will have type ∃X.List<X>, equivalent to List<?>.
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<X>Pair<X, X> make(List<X> x) {}
<X>Boolean compare(Pair<X, X> x) {}

void m()
{

Pair<?, ?> p;
List<?> b;

this.compare(p); //1, type incorrect
this.compare(this.make(b)); //2, OK

}

Figure 2.6: Example 2.

2.4.3 F-Bounds

Where a wildcard type instantiates a class with an F-bounded parameter, the wildcard is

also F-bounded. For example, given class F<X extends F<X>>, the wildcard type F<?> is

given the bound F<?>, where the wildcards hide the same type parameter. Using existential

type notation, we write ∃Z→[⊥ F<Z>].F<Z>. The bound F<X> is inherited from the class

declaration, substituting the actual parameters gives F<Z>.

Surprisingly, F<? extends F<?>> also corresponds to the existential type ∃Z→[⊥ F<Z>].F<Z>.

The existential type found directly is ∃Z→[⊥ ∃Y.F<Y>].F<Z>, whereas the type found by

inheriting the bound is ∃Z→[⊥ F<Z>].F<Z>. Since F<Z> is a subtype of ∃Y.F<Y>, the inherited

bound is used instead of the declared one.

We can test these translations using capture conversion; for example in figure 2.7 the call to

testF succeeds because f has type ∃Z→[⊥ F<Z>].F<Z>, which can be capture converted to

F<X>. The call to testNotF fails because notF has type ∃Z→[⊥ ∃Y.NotF<Y>].NotF<Z>. This

type cannot be capture converted to NotF<X> because the bounds on Z do not match the bounds

declared on X in the testNotF method.

2.4.4 Using Wildcard Types

A wildcard type gives only partial information about an object, therefore, there must be some

restrictions on using such objects. These restrictions ensure soundness in the presence of variant
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class F<X extends F<X>> { }
class NotF<X extends NotF<?>> { }

class Test{
<X extends F<X>> void testF(F<X> x) { }
<X extends NotF<X>> void testNotF(NotF<X> x) { }

void m(F<? extends F<?>> f, NotF<? extends NotF<?>> notF) {
testF(f); //OK
testNotF(notF); //error

}
}

Figure 2.7: Testing the behaviour of F-bounded wildcard types.

subtyping.

We can use a wildcard’s upper bound where the corresponding formal variable appears in

covariant position, and the lower bound where the variable appears in contravariant position.

If a bound is missing, then we can still use Object in covariant position or the bottom type

(⊥) in contravariant position. In the box example, the return type of get is covariant and the

parameter of set is contravariant. We thus get the following types:

b:Box<? extends Shape> b:Box<? super Shape> b:Box<?>

b.get(): Shape Object Object

b.set(x) x:⊥ x:Shape x:⊥

We can think of these rules in terms of existential types. If b has type ∃X→[A B].Box<X>, then

calling b.get() requires us to unpack b, then type check the invocation on type Box<X>. Thus,

the result of b.get() has type X, but if this is given as the result type, then X would escape its

scope. We can use subsumption to give an X-free supertype of X, which in this case can be the

upper bound (B) of X. This corresponds to the type of b.get() in the second column of the

table.

To call set, we must again unpack b to find the parameter type, X. X is fresh in the scope of

the method invocation so to derive that any type is a subtype of X, we must derive that that

type is a subtype of X’s lower bound — A. This corresponds with the parameter type of b.set

in the third column of the table.

We can see that there is a trade-off between flexible subtyping and usefulness. We can get
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precise types for all operations on an invariant generic type. But to use co- or contravariance,

we must sacrifice some information about the types of methods and fields, thus restricting

usefulness. An unbounded wildcard type has the most flexible subtyping, however, we can only

call methods with null parameters and return Objects.

Crucial to understanding the rules for using wildcard types, is that a wildcard hides a spe-

cific actual type argument. A wildcard’s bound is a bound on this hidden type, not a bound

on the type of objects with the hidden type. The difference is due to the implicit subsump-

tion due to inheritance found in object-oriented languages (section 2.1.1). A box with type

Box<? extends Shape> may have witness type Circle or Shape (amongst others). If the hid-

den type is Circle, then the box may contain objects of type Circle and its subclasses. If

the hidden type is Shape then it may contain objects with type Shape or its subclasses. A box

with type Box<? super Shape>, may have hidden type Shape or Object, the objects in the box

must be a subtype of the hidden type, so in the latter case, the box may contain objects of any

type. These intuitions lead straightforwardly to the rather arbitrary feeling rules about types

in co- and contravariant positions.

2.4.5 Comparison with Variant Parametric Types

Java wildcards evolved from variant parametric types [54] (section 2.2.2). Other than the

difference in notation, the two systems appear very similar, and both have a strong correspon-

dence with existential types (see section 2.3.7). However, there are some subtle but important

differences; we describe them in this section.

There is no equivalent of wildcard capture in variant parametric types. In Java, a method with

signature <X>void m(List<X> x) can be called on an actual parameter with wildcard type,

such as List<?>; this is not permitted with List<*> or any other variant parametric type.

This makes wildcards far more flexible; instances requiring wildcard capture occur frequently

in practice [54].

Wildcard capture is a form of existential unpacking with type parameter inference. Existen-
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tial unpacking without inference occurs in both systems, where a wildcard type or variant

parametric type is the receiver of a method call or field access.

Types can be expressed in Java programs, by using wildcard capture, that cannot be denoted in

the wildcards syntax (see section 2.4.2). For this reason, explicit existential types are required

to formalise wildcards. Since variant parametric types lack wildcard capture, such types cannot

be expressed. Thus, the natural syntax of variant parametric types is sufficient for their for-

malisation. Although the syntax of types of variant parametric types and wildcards are equally

expressive, the Java language with wildcards can express more types than the variant paramet-

ric types system. For example both syntaxes can express a type equivalent to ∃X,Y.Pair<X,Y>:
Pair<*,*> in variant parametric types and Pair<?,?> in Java. However, an expression with

type equivalent to ∃X.Pair<X,X> can only be expressed in Java (see section 2.4.2). Explicit

existential types are more expressive than either system’s notation.

In Java, there is an equivalence between unbounded and bounded wildcards. A wildcard without

an upper bound is equivalent to a wildcard with Object as its upper bound. A wildcard without

a lower bound is equivalent to a wildcard with the bottom type as its lower bound. Such an

equivalence does not exist with variant parametric types. The practical consequence of this, is

that variant parametric types restrict access to some members completely, whereas wildcards

allow all members to be accessed. For example, no methods may be called on a variable with

type Box<*>, but, on a variable with type Box<?>, we may call set(null), and call get(),

returning an Object.

Partially as a consequence of the previous difference, subtyping between variant parametric

types is more restrictive than between wildcards types. Java with wildcards allows subtyping

between bounded and unbounded wildcards, whereas, variant parametric types forbid subtyping

between types with different variance annotations. For example,

` Box<? extends T> <: Box<?> and ` Box<? super T> <: Box<? extends Object> are true in

Java with wildcards, but the corresponding variant parametric types relations, ` Box<+T> <:

Box<*> and ` Box<-T> <: Box<+Object> are not.
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2.4.6 Previous Models of Java with Wildcards

There are several existing models that are, or could be regarded as, models for wildcards. None

of these models offer a proof of type soundness for Java with wildcards. Some are informal,

some are only partial models, and some do not address soundness.

Informal Descriptions

There have been several informal descriptions of Java with wildcards. The Java specification

[47] is the definitive reference for the behaviour of wildcards. However, it is rather vague in

some of the subtler areas of the specification, such as the definition of legal bounds on wildcards

that involve inherited bounds and F-bounds.

In the first description of wildcards [90], the authors describe the typing and subtyping prop-

erties of wildcards, capture conversion, and inference of type parameters including wildcards.

Wildcards are described in terms of existential types, but there is no formalisation.

Wildcards have been described in terms of access restriction [92]. Access restriction is used to

describe variant parametric types [54] in terms of the members that can or cannot be accessed

in a parameterised class. This is extended to cover wildcards, where true access restriction is

replaced by restriction of types (see section 2.4.5). Access restriction is formalised in terms of a

close relation, similar to that used for variant parametric types. Capture conversion is ignored

and no formalism is given for a full language.

Wild FJ

Wild FJ [60] was the first formalism to include all of the interesting features of Java wildcards.

The syntax of Wild FJ is a subset of Java with wildcards, but requires explicit type arguments

to polymorphic method calls. Java types are converted to existential types ‘on the fly’, and

this conversion of types complicates the typing, subtyping, well-formedness, and auxiliary rules.

Type soundness has never been proved for Wild FJ.
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Wildcard types are used in the surface syntax of Wild FJ, but existential types are used in type

checking, and throughout the formalism. Wildcard types are translated to existential types by

the snap function. snap operates on types using fix to translate type parameters, fix uses merge

to merge the declared and inherited bounds on wildcards (see the start of section 2.4). There

is a slight problem with merge: if there are both declared and inherited bounds, it always uses

the declared bound. The JLS [47] states that the most strict bound is used, as is done in our

translation (section 3.2).

In the type rules (WT-Invk and WT-Field), packing is done by combining a type that may

contain free variables (say, T) and the environments that may contain those free variables (∆)

to make an existential type, ∃∆.T. Packing also takes place in WS-Env, in the same way as

in XS-Env of Tame FJ (described in section 3.1.2).

Unpacking in Wild FJ is done by separating an existential type, ∃∆.T, into ∆ and T. Unpacked

types can be used to infer type parameters using the capture function. If an actual type

parameter of a method is explicitly declared, then the capture function returns it. If it is

omitted (actually marked with ?), then a limited form of inference is performed (this may infer

unpacked variables and performs a similar role to match in Tame FJ (section 3.1.4)).

See section 5.2.1 for a comparison of Wild FJ with Tame FJ.

The subtyping rules of the JLS [47] have been formalised and compared (informally) with those

of Wild FJ [60]. The main difference between JLS and Wild FJ subtyping, is that in the

JLS, conversion to existential types is only done where necessary, whereas in Wild FJ, Java

types must be converted to existential types before other rules can be applied. Under the

formalisation of the JLS rules, conversion to existential type (using snap) is combined with

unpacking in a rule similar to Pizza-S-∃-≤ [70] (section 2.3.7). Subtyping between wildcard

and non-wildcard types (which involves packing of the underlying existential representation)

is handled without conversion to existential types. These two rules could be combined into an

approximation of the WS-Env rule.
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Variant Parametric Types

Variant parametric types [54] (see sections 2.2.2 and 2.3.7) have been formalised and proved

sound, and this formalism can be regarded as a partial model for wildcards in Java. Capture

conversion and some other flexibility is missing from a full model for wildcards, the differences

are described in section 2.4.5.

JavaGI and EX upto

JavaGI [94] is a proposed extension to Java that generalises Java interfaces. In particular, it

allows interfaces to be dealt with in terms of existential types. Packing and unpacking takes

place in separate subtype rules, these rules are similar to those of Pizza [70], described in

section 2.3.7.

EX upto [95] is a formulation of subtyping of wildcard types in Java. It follows subtyping in

JavaGI, in particular, packing and unpacking occur in separate rules, as in Pizza [70]. EX upto

uses explicit existential types; wildcard types must first be translated to existential types. We

compare EX upto subtyping with Tame FJ in section 5.2.3.

Subtyping in JavaGI and EX upto is undecidable [95]. There are no type or reduction rules for

EX upto and soundness is not investigated. Furthermore, it is a simplification of Java subtyping

(for example, subclassing and inheritance are not considered).

2.4.7 Decidability

Decidability of typing in Java with wildcards is an interesting and open problem. Wildcards

are closely related to existential types, and the standard formulation of existential types is

undecidable [73] (see section 2.3.4). The main questions concerning decidability of wildcards

involve subtyping and the decidability of type parameter inference. The latter has not yet been

addressed [62].
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Java subtyping does not satisfy any of the conditions for decidability suggested by Pierce [73]:

quantification of types can occur at any depth, there is no stratification of types, and subtyping

follows the full variant. A particular formalisation of subtyping (using separate rules for packing

and unpacking as in Pizza, see section 2.3.7) has been shown to be undecidable [95]. On the

other hand, a decidable type unification algorithm for Java 5.0 has been described [76], which

is a step toward a decidable subtyping algorithm, and hints that such an algorithm may exist.

Subtyping in the general case for declaration-site variance is undecidable [55]. The fact that

there exists a simple encoding from declaration-site to use-site variance suggests that subtyping

in Java may be undecidable (several example programs are given in [55] that cause the Java

compiler to crash). However, as Kennedy and Pierce point out [55], the argument does not

apply if subtyping is restricted in certain ways; for example, subtyping on the .NET CLR (the

virtual machine of C# and its intermediate language) is decidable because each type has a

finite number of supertypes. Java satisfies one of these restrictions, multiple inheritance from

different instantiations of the same type is forbidden17. However, this does not mean that Java

subtyping is decidable, only that this specific argument cannot be applied.

2.5 Ownership Types

In Java and similar languages, the heap is unstructured in the sense that any object can refer

to or access and modify any other object (subject to class-level access restrictions such as

private). This means that reasoning about programs (either by the programmer or some tool)

must take the entire heap into account. In particular, Aliasing (allowing multiple references to

an object) allows an aggregate’s representation to change without the aggregate being aware

of the change.

There have been many attempts to overlay some structure on the heap, in the sense of restricting

the parts of the heap that a given object can access, reference, or modify. This limits the scope

or effect of aliasing and allows for easier and more powerful reasoning about programs.

17For example, a class cannot implement Box<Circle> and Box<Square> (if Box were an interface).
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Islands [50] and Balloons [7] made the first attempts to structure the heap. They enforced

full encapsulation, that is, they restrict both the ingoing and outgoing references of an aggre-

gate. The heap is divided into distinct partitions and references cannot breach the partition

boundaries. Flexible alias protection [69] was proposed as an alternative where references (and

thus aliases) to an object’s internal state (its representation in the ownership terminology) are

limited, while references to its interface may be shared more freely.

Ownership types [30, 32, 34, 33, 97] implement the core features of flexible alias restriction.

In an ownership types system each object is owned by a context (contexts are usually objects,

although the definition of context changes from system to system). This structures the heap as

a tree and the type system ensures that this structure cannot be changed at runtime. Ownership

types can be used to control aliasing [34, 18, 12, 85, 84] by restricting references according to

the ownership hierarchy.

Various flavours of ownership types have been suggested, and have been successfully applied in

many areas: annotating large Java library classes and multi-threaded server programs to prevent

data races in all their studies [13]; supporting memory management in real time systems, with

applications such as flying unmanned aircraft [9]; enforcing software architectures in large,

real-world software [5].

We describe the ownership hierarchy with an example. In this graphical representation of a

small heap, objects are represented as shaded boxes with rounded corners, and encapsulation

boundaries with square cornered rectangles. Not all possible or illegal references are shown;

since the root object is not a real object, it is also not shown.
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In this example, object 1 owns object 3, which owns objects 4 and 5. The representation of

object 1 is objects 3, 4, and 5. Object 2 owns no object and is only owned by the theoretical

root object (as is object 1).

The relation between objects in the ownership hierarchy is expressed by the inside relation. We

write ` a ¹ b — a is inside b — if a can be derived to be transitively owned by b. In the

example, we have:

` 3 ¹ 1

` 4 ¹ 3

` 5 ¹ 3

` 4 ¹ 1

` 5 ¹ 1

We denote the root of the ownership hierarchy with ©. All objects are considered inside ©.

All flavours of ownership type share a notion of objects being owned by contexts and have the
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effect of overlaying a graph (usually tree) structure on the heap. There are also several ways

to describe the ownership structure in the program syntax. One common solution, and the

one adopted in this thesis, is to parameterise classes by contexts, similarly to parametric types

(see section 2.2). Each instance of a class can have different actual context parameters. The

first context parameter of a type is the owner of objects of that type and is mandatory. For

example, a type C<o> describes objects owned by o. In the heap diagram, and assuming that

all objects are instances of the class C which has a single context parameter, the objects have

the following types:

1:C<©>

2:C<©>

3:C<1>

4:C<3>

5:C<3>

Context parameters are fixed for the lifetime of an object and are immutable. Declared sub-

classes must have the same owner as their superclasses [32] and subtyping is usually invariant.

Thus, the owner of an object cannot change due to subtyping.

Although ownership is a property of objects and we speak about a structure on the heap,

ownership and the inside relation are purely static properties. No runtime checks are necessary

(except when casting, as in other systems). Furthermore, all type information can safely be

erased at compile time. All contexts are named statically and the ownership hierarchy is known

statically from declared relations between contexts; no new ownership information is available

at runtime.

Classes may be parameterised by more than one formal context, these extra contexts can be

used within the class declaration as actual contexts in the types of fields and methods. For

example, we can define a linked list as:
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class List<o, do> {

Object<do> datum;

List<o, do> next;

...

}

A list with type List<a, b> is owned by a, the data in the list is owned by b. A heap containing

a list with three nodes is shown in the diagram below:

Owner polymorphic methods [30, 97] are methods parameterised by contexts. They allow for

code reuse with different owners. They have a similar syntax and semantics to type poly-

morphic methods. Since the scope of context parameters is limited to the method, it is not

possible for the receiver to store a reference to any object owned by a method-level context

parameter. Owner polymorphic methods thus increase flexibility of ownership systems without

compromising integrity.

In many systems (for example [30, 32, 72]), formal context parameters may have explicit bounds;

a bound states that the parameter is inside or outside a context (we use outside to mean a is

outside b if and only if b is inside a). These bounds can then be reflected in the inside relation.

Using bounds makes ownership systems more descriptive; they are necessary (implicitly or

explicitly) for the owners-as-dominators property, described below.
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2.5.1 Encapsulation Properties

Many ownership types systems, including the original work on ownership types, enforce the

owners-as-dominators property [34, 30, 79]. A system satisfies owners-as-dominators if every

path of references to an object, o, from the root object, passes through the owner of o. That

is, objects are dominated by their owners. Clarke [30, 34] showed that owners-as-dominators is

satisfied if every reference to an object ι′ comes from an object ι that is inside the owner of ι′.

More formally,

∀ι, ι′ ∈ dom(H) : ι refers to ι′ ⇒ H ` ι ¹ ownH(ι′)

We use ownH(ι′) to denote the owner of ι′ in the heap (H) and dom to give the addresses of

all objects in H.

We extend the heap example above with references. To satisfy owners-as-dominators, legal

references are represented with solid arrows, and illegal references with dashed arrows.
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Encapsulation in most context-polymorphic ownership systems is given by the ability to name

contexts. In order to write a type, its actual context parameters must be named. By ensuring

that all contexts that can be named in a class are outside the owner of that class, we get

the owners-as-dominators property. Systems that satisfy owners-as-dominators enforce deep

ownership, encapsulated objects are protected from direct and indirect access.

Owners-as-dominators is sometimes too strong; some common programming idioms cannot be

written if it is strictly enforced. The most common example is an iterator. An iterator can be

owned either by its collection or its user. In the first case, it cannot be accessed from outside the

collection so is useless. In the second case, it cannot access the contents of the collection, again,

it’s useless. There have been two proposals to relax ownership systems to support iterators and

similar idioms: allowing dynamic references to encapsulated objects [32] and allowing inner

classes access to an object’s representation [30, 11]. These two approaches are described in the

next paragraphs.

By allowing final variables to act as context parameters, this can be safely named as a context

outside of its class declaration. This allows encapsulation to be temporarily violated and an

object’s representation accessed. Access to encapsulated objects is limited to the lifetime of a

method by variable scoping. Storing references to an object’s representation (dynamic aliases) is

limited to the stack; the owners-as-dominators property still applies to the heap. An iterator is

implemented by being owned by its collection, it thus has access to the objects in the collection.

It can be accessed from outside the collection using a dynamic alias, for example:

final List<this, d> list = ...;

Iterator<list, d> it = list.makeIterator();

Inner classes are classes declared within a class definition and considered to exist on a per-object

basis. Inner class objects can be considered to have special privileges to the representation of

the object in which they are declared [30, 11]. In an inner class, the programmer can name the

outer class object in which the inner class resides using the syntax C.this, where C is the name

of the outer class. An iterator can be implemented as an inner class of its collection. Since the

collection does not own the iterator, it can be used freely.
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An alternative encapsulation property is owners-as-modifiers, supported by the universes type

system [66, 67] and others. In these systems, there are fewer restrictions on references, but

objects can only be modified by their (transitive) owners. Owners-as-modifiers encapsulation

is useful for reasoning with invariants [68].

2.5.2 Related Systems

In this section we describe some of the different flavours of ownership types systems. We focus

on systems that are related to our work with existential types and variant ownership (section 4).

Multiple Ownership

MOJO [23] extends standard ownership systems by allowing objects to have any number of

owners. This makes for a much more flexible system; however, strong encapsulation properties

cannot be enforced. The heap is structured as a directed acyclic graph rather than a tree. This

graph is used to describe effects and show disjointness of expressions.

In MOJO, classes are declared with a single formal owner; but many objects may be bound

to a single context parameter, thus, an object can have multiple owners. Using ? expresses an

unknown context. Since the unknown context may only be expressible as the intersection of

many named contexts, ? expresses uncertainty in the number of objects that own an object.

Ownership Domains

In the standard ownership types systems, contexts are defined by objects. Ownership domains

[6, 5, 56, 83] relaxes this restriction by using domains as contexts; a domain simply represents

some part of an object’s representation. An object may have multiple domains, allowing for

more flexible heap topologies than ownership types, whilst still maintaining a tree structure. By

allowing the access policies of domains to be specified by the programmer, the representation
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of an object can safely be partially exposed, allowing for the implementation of iterators and

similar constructs.

Universes

Universes [40, 66, 67, 68, 36] use a simpler notation than ownership types. There is no param-

eterisation of classes or types. Instead, types may be annotated with peer (owned by the same

context as this), rep (owned by this, i.e., in the representation of this), or any (owned by

some unknown owner). The universes type system enforces owners-as-modifiers by disallowing

field assignment and (non-pure) method call to objects annotated with any. Flexibility is given

by allowing any variables to be passed around and accessed without restriction.

Effects

An effect [48] describes the state that is accessed during the execution of a piece of code. By

analysing the effects of expressions and methods, a tool can reason about the interference or

disjointness of pieces of code. This knowledge is useful for many applications, such as program

transformations, concurrency analysis, and debugging. Ownership types allow effects to be

specified in terms of the ownership hierarchy [32]. This allows for the precise denotation of

effects, including of parts of the heap that are unknown (because of the hierarchical nature

of object ownership). Effects have been combined with multiple ownership [23], ownership

domains [84], and invariants [59].

In effective ownership [57], effects are used to enforce encapsulation. The same object hierarchy

is used as in ownership types, however, encapsulation is enforced by restricting write effects

rather than references. Effective ownership enforces an owners-as-modifiers discipline. The

type system is more flexible than the Universes system, but requires more syntactic overhead.
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Uniqueness

A pointer is unique if it is the only pointer to an object. Uniqueness systems [50, 63] are an

alternative to ownership types for controlling aliasing. Since a unique reference can have no

aliases, the reference is the only possible way to access, and thus change, the referenced object.

This allows programmers and compilers to reason locally about unique references and avoid

many of the problems usually associated with reasoning about object-oriented programs.

Uniqueness is a very strict protocol and causes abstraction problems: minor changes to the

implementation of a class can require changes to the interface of a class. External uniqueness

[29, 31, 72] addresses this issue by requiring that there is only one external reference to a unique

object; there may be many references to a unique object from within its representation. Owner-

ship types are used to define and enforce representation encapsulation. External uniqueness is

a stronger property than owners-as-dominators. In addition to forbidding references to within

an object’s representation, it only allows one reference to the object itself.

Confinement

Confinement [93] is an alternative to ownership types. The scope of encapsulation is drawn

from packages rather than objects and is defined on a per-class rather than per-instance basis.

Confinement has the advantage that the number of scopes is statically known (equal to the

number of packages), as opposed to the unbounded number of contexts in parametric ownership

types. There is also less annotation overhead and the system is conceptually simpler. However,

encapsulation is weaker and more coarse grained than in ownership types18.

2.5.3 Variant Ownership

Ownership types are usually invariant (section 2.5). To increase flexibility, there have been

several attempts to introduce some kind of variant subtyping to ownership systems. Variant

18This is not a weakness of confinement types, because their motivation is encapsulation within modules, not
objects.
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contexts increase flexibility by abstracting contexts: a type can be written without having to

be able to name that type’s context parameters. This leads to increased genericity and less

duplication of code: methods and types can be written that operate on objects with different

owners. Furthermore, context variance improves abstraction, because interfaces can be written

without specifying precise contexts in types, which may be an implementation detail. See

section 4.1.3 for an example with many uses of variant contexts.

In this section we describe previous approaches for adding context variance to ownership lan-

guages. We compare these approaches with Jo∃ in section 5.3.1.

The ‘any’ Context

Several systems include the notion of an unknown context: any (sometimes readonly) in

universes [66, 67, 36] and effective ownership [57], and ? in MOJO [23]. For all classes C and

contexts o, C<o> is a subtype of C<any>19 (peer C and rep C are subtypes of any C in the

universes type system). There must be some restriction on the use of objects owned by the

unknown context in order to preserve soundness and encapsulation properties. In universes and

effective ownership such objects cannot be modified.

An ‘any’ context is a useful addition to an ownership system, it allows for the abstraction of

types and thus gives the benefits of variant contexts such as collections of objects with different

owners. However, it only allows complete abstraction of contexts, it is more useful to have par-

tial abstraction so that some information about contexts is retained. Partial abstraction would

allow the programmer to make a trade-off between increased flexibility and better ownership

information.

Variant Ownership Types

Variant ownership types [58] support variance annotations [54] (see section 2.2.2) on context

19Note the difference in behaviour to the © context. C<o> is not a subtype of C<©>, even though © is
outside all contexts.
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parameters. Actual context parameters20 may be marked as co-, contra-, or bivariant. Sub-

typing follows variant parametric types [54] except that variance is with respect to the inside

relation, not subtyping. For example, C<+o2> denotes an object of class C owned by some object

that is inside o2; C<o1> is a subtype of C<+o2> if o1 is inside o2. A bivariant context (marked

*) is equivalent to the unknown contexts discussed above. By allowing variant contexts, the

naming restrictions of ownership types that give rise to encapsulation are lifted. Encapsulation

is maintained because a separate mechanism for accessibility is used. By separating ownership

into accessibility and reference capability and by supporting variant contexts, the type system

is flexible enough to support iterators and similar idioms.

The type system handles variant ownership types as if they were existential types; packing and

unpacking are part of the type system, and are not made explicit in the syntax.

Variant ownership does not support owner polymorphic methods or both upper and lower

bounds on variant contexts. The scope of variance in a type is fixed for a given class; for

example, we could write a list where each element has the same owner, and, by using variance

annotations, we can abstract this owner. Or, we can write a list class where the owner of each

element is potentially different and unknown. However, it is not possible to write a generic list

where the user of the list can choose if the elements have the same or different owners.

2.5.4 Existential Types and Ownership

Existential types have appeared in the ownership literature in several guises and for several

purposes. Here we describe explicit uses of existential types in ownership languages; we compare

these to Jo∃ in section 5.3.2.

Infinitary Ownership Types

In his PhD thesis, Clarke [30] uses existential quantification of contexts to avoid dependent

typing in his infinitary ownership types system. This system is a formalisation of ownership

20Therefore, variant ownership types are a form of use-site variance, see section 2.2.2.
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as an object calculus and uses dynamically created contexts to model an infinite number of

contexts (present in class-based systems because of class instantiation). Using dynamically

created contexts as parameters in types would lead to dependent typing, Clarke avoids this by

hiding the dynamic context with existential quantification.

Existential quantification of contexts in infinitary ownership types follows quantification of

types in existential types systems (see section 2.3.2). Quantification is explicit and existential

types are introduced and eliminated using pack and unpack expressions, respectively. There

are no lower bounds on contexts.

Quantification of an object’s owner is forbidden to prevent information about an object’s owner

being forgotten by subsumption. This ensures that ownership remains invariant with subtyping

and that encapsulation properties are not violated.

System Fown

System Fown [56] is a formalisation of an ownership domains [6] language as an extension of

System F. System Fown is imperative, higher order, and includes existential types using pack

and unpack expressions. It does not include subtyping, so does not have a notion of subtype

variance. There is no explicit treatment of objects or classes21. Ownership is enforced using

permissions. A permission allows functions in one domain to access or create entities in another

domain. “Access” includes reading, dereferencing, storing a reference, unpacking an abstract

package, and function application.

In System Fown, types may be existentially quantified by type variables or domains. Quantifi-

cation of a domain means that the domain does not need to be named. This allows abstract

packages to be exported out of the scope of a domain declaration (which is similar to a let

expression). Safety is ensured because a domain must still have access to an abstract package

to unpack it, even if the abstract package’s domain cannot be named22.

21These can be encoded using existential types.
22This is possible because permissions can be to or from the domain they are attached to.
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System Fown satisfies a strong encapsulation property called access correctness. This states

that any access to an entity occurs from a domain that has permission to access that entity’s

domain. That is, execution abides by the permissions defined by the programmer.

Existential Downcasting

To ensure type safety, downcasts23 must be dynamically checked. In an ownership system this

dynamic check must include checks on ownership information. This means keeping ownership

information around at runtime, which is a potentially huge overhead. To address this problem,

an object can be cast to an existential type, known as existential downcasting [98].

Wrigstad and Clarke [98] use a programmer friendly syntax without explicit existential quan-

tification. Fresh names for contexts are used in casts and these may be used outside of the

casts. These fresh contexts resemble unpacked existential types. Their formalism supports this

view (which is not explicitly expressed in the paper): existential owners are introduced by a let

expression, the syntax and semantics of which closely resemble existential unpacking.

The following example demonstrates existential downcasting:

void m(Object<this> x) {

List<this, d> l = (List<this, d>) x;

}

The cast introduces the context d. The owner of l (this) is not affected by the cast since it is

named in the type of x. Since d cannot escape the scope of the method, elements of l (and l

itself) cannot be permanently stored or returned from the method.

2.5.5 Generics and Ownership Types

Ownership types and generics fulfil different roles; in terms of a list, generics allow us to say

“this is a list of X” and ownership types to say “this list belongs to x”. It is likely that a

23A downcast is a cast that gives a type T to an expression e with type T′ where T is a subtype of T. In Java
casting has the syntax (T)e.
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programmer will wish to use both generics and ownership, to say “this is a list of X belonging

to x”. There have been two approaches to combining ownership and generics: support the two

systems orthogonally or use generics to implement ownership.

Combining Generics and Ownership Orthogonally

Type genericity can be combined with ownership types by allowing classes to be parameterised

by contexts and types. For example (we write context parameters first and use lower case, we

write type parameters using upper case),

class GenericList<o, X> {

X datum;

GenericList<o, X> next;

}

In comparison to the list example in section 2.5, only the owner of the list is mentioned explicitly,

the owners of the elements in the list are part of the actual type parameter that will be bound

to X. For example, List<this, Shape<©>> represents a list of Shapes owned by this where

each shape in the list is owned by ©. In fact, using unbounded type variables is a convenient

shorthand [30]. To specify the list fully, we must use a formal context for the owner of the

elements:

class GenericList<o, d, X extends Object<d>> {

X datum;

GenericList<o, X> next;

}

The invariance of owners ensures that any subtype of Object<d> (and thus any valid actual

parameter for X) will have owner d.

As with most topics in ownership types, Clarke discusses adding type genericity to ownership

types in his thesis [30]. His object calculus for infinitary ownership supports type variables and

allows methods to be universally quantified by types. He goes on to discuss adding generics



2.5. Ownership Types 91

to a class-based language with ownership types. He also hints at the possibility of using type

parameters to implement ownership, discussed in the next section.

Universes also come in a generic variety [39]. Since types in the universes system do not require

ownership parameterisation, a class is parameterised by types only. Type generic classes allow

more precise specification of ownership than in the non-generic universes system. For example,

without generics, a list must have elements with an any modifier:

class UList {

peer UList next;

any Object datum;

...

}

...

UList l = ...

With generic universes, the ownership modifier of elements can be specified in the type of list
objects, rather than in the list’s class declaration:

class GUList<X> {

peer GUList<X> next;

X datum;

...

}

...

GUList<rep Shape> l = ...

Generic universes enforce the owners-as-modifiers discipline, as in non-generic universes.

Confined types have been extended with generics [99]. Confinement can be specified by type

parameters, as well as in the class declaration, so classes can be generic in their confined-ness.

Generic confinement is formalised as an extension of FGJ [53] and proved sound.

Implementing Ownership with Generics

Rather than treating generics and ownership separately, it is possible to extend a generic type

system to implement ownership types. OGJ [77, 78] does exactly that, implementing deep
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ownership with only small additions to Java with generics. OGJ uses a type parameter to

signal the owner of objects of a class. This parameter is given last in the sequence of type

parameters and is usually called Owner. Contexts are indicated by type parameters. Types

that indicate contexts extend the World class. This is used to indicate that objects are owned

by this. This requires special treatment in the type system to enforce per-object, rather than

per-class, ownership; all accesses to objects owned by This must occur using the this variable

as receiver.

Context parameters may be implicitly bound, Object<O> may be used as a bound even if O is

not declared as a parameter. Potanin et al. note that implicitly bound contexts are treated

much like wildcards in Java [78].

A generic list is written in OGJ as

class OGJList<X extends Object<XOwner>, Owner> {

X datum;

OGJList<X, Owner> next;

...

}

...

OGJList<Shape<World>, This> l = ...

XOwner is treated as a fresh type variable bounded by World.

OGJ satisfies the deep ownership property. This is enforced in a similar way to standard

ownership systems, by restricting context parameters to being outside the owner of an object

and invariant ownership — the owner of a class may not change due to subclassing or subtyping.



Chapter 3

Formal Models for Wildcards

Wildcards (described in section 2.4) are the mechanism adopted in Java to implement sub-

type variance. Although there have been several descriptions and formalisations of Java wild-

cards [14, 47, 60, 90], none have been proved type sound except for ours.

In the first section of this chapter, we show type soundness for Java with wildcards using a

new formal model, Tame FJ. We use explicit existential types (such as ∃X.List<X>) to model

Java wildcard types, but implicit packing and unpacking of existential types. In section 3.2, we

define and discuss a translation to Tame FJ from a subset of the Java language that includes

wildcards. In section 3.3, we discuss how Tame FJ relates to more traditional existential types

systems; in particular, ∃J, a model for wildcards using explicit packing and unpacking. We also

discuss some of the other interesting aspects of Tame FJ.

3.1 Tame FJ

Tame FJ is an extension of FGJ [53]. The major extension to FGJ is the addition of existential

types, used to model wildcard types. Typing, subtyping and reduction rules must be extended

to accommodate these new types, and to handle wildcard capture. As is common [53, 60],

we regard Java’s inference of type parameters for method calls (except where this involves

wildcards) as a separate pre-processing step and do not model this in Tame FJ.

93
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We use existential types in the surface syntax and, in contrast to Wild FJ, do not create them

during type checking; this simplifies the formal system and our proofs significantly. In particu-

lar, capture conversion is dealt with more easily in our system because fresh type variables do

not have to be supplied. We also pack existential types more declaratively, by using subtyping,

rather than explicitly constructing existential types.

e ::= x | e.f | e.<P>m(e) | new C<T>(e) expressions

Q ::= class C<X¢ T> ¢ N {T f; M} class declarations
M ::= <X¢ T> T m(T x) {return e;} method declarations

v ::= new C<T>(v) values

N ::= C<T> | Object<> class types
R ::= N | X non-existential types
T, U ::= ∃∆.N | ∃∅.X types
P ::= T | ? type parameters

∆ ::= X→[Bl Bu] type environments
Γ ::= x:T variable environments
B ::= T | ⊥ bounds

x variables
C classes
X, Y type variables

Figure 3.1: Syntax of Tame FJ.

3.1.1 Notation and Syntax

Tame FJ is a calculus in the FJ [53] style, see section 2.1.2. We use vector notation for

sequences; for example, x stands for a sequence of ‘x’s. In our rule definitions, we use the

layout and ordering of premises only to aid comprehension and organisation of rules, there is

no formal significance. Each rule consists of one or more conclusions and zero or more premises,

there is no nesting of derivation rules or tree structure. We use ¢ as a shorthand for extends

and ¤ for super. The function fv() returns the free variables of a type or expression, and

dom() returns the domain of a mapping. We assume that all type variables, variables, and

fields are uniquely named.
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The syntax for Tame FJ is given in figure 3.1. The syntax for expressions and class and

method declarations is very similar to Java, except that we allow ? as a type parameter in

method invocations. In Tame FJ (and as opposed to Java) all actual type parameters to a

method invocation must be given. However, where a type parameter is existentially quantified

(corresponding to a wildcard in Java), we may use ? to mark that the parameter should be

inferred. Such types cannot be named explicitly because they cannot be named outside of the

scope of their type. The marker ? is not a replacement for ? in Java; ? cannot be used as a

parameter in Tame FJ types, whereas ? cannot be used as a type parameter to method calls

in Java. Note that we treat this as a regular variable.

The syntax of types is that of FGJ [53] extended with existential quantification. Non-existential

types consist of class types (e.g., C<D<>>) and type variables, X. Types (T) are existential types,

that is non-existential types (R) quantified by environments (∆, i.e., sequences of formal type

variables and their bounds), for example, ∃X→ [∃∅.D<> ∃∅.Object<>].C<X>. Type variables

may only be quantified by the empty environment, e.g., ∃∅.X. In the text and examples, we use

the shorthands: C for C<>, ∃X.C<X> for ∃X→[⊥ Object<>].C<X>, and R for ∃∅.R. We use ∃∅.R
(which subsumes ∃∅.X) as an element of T, rather than R, so that types are always existential

types and always consist of a quantifying environment and a quantified, non-existential type.

This simplifies packing and unpacking.

Existential types in Tame FJ correspond to types parameterised by wildcards in Java. Using T as

an upper or lower bound on a formal type variable corresponds to using extends T or super T,

respectively, to bound a wildcard. This correspondence is discussed further in section 3.2. The

bottom type, ⊥, is used only as a lower bound and is used to model the situation in Java

where a lower bound is omitted. This is a faithful modelling because bounded and unbounded

wildcard types behave in similar ways (as opposed to, for example, variant parametric types

[54]), see section 2.4.5.

Substitution in Tame FJ is defined in the usual way but with a slight modification. For the

sake of consistency (see section 3.3) formal type variables are quantified by the empty set when

used as a type in a program (∃∅.X). Therefore, we define substitution on such types to replace
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the whole type, that is [T/X]∃∅.X = T.

A variable environment, Γ, maps variables to types. A type environment, ∆, maps type vari-

ables to their bounds. Where the distinction is clear from the context, we use “environment”

to refer to either kind of environment.

Subclasses: ` R @@: R

class C<X¢ Tu> ¢ N {...}
` C<T> @@: [T/X]N

(SC-Sub-Class)

` R @@: R

(SC-Reflex)

` R @@: R′′ ` R′′ @@: R′

` R @@: R′

(SC-Trans)

Extended subclasses: ∆ ` B @: B

class C<X¢ Tu> ¢ N {...}
∆ ` ∃∆′.C<T> @: ∃∆′.[T/X]N

(XS-Sub-Class)

∆ `⊥@: B

(XS-Bottom)

∆ ` B @: B

(XS-Reflex)

∆ ` B @: B′′

∆ ` B′′ @: B′

∆ ` B @: B′

(XS-Trans)

dom(∆′) ∩ fv(∃X→[Bl Bu].N) = ∅ fv(T) ⊆ dom(∆, ∆′)

∆, ∆′ ` [T/X]Bl <: T ∆, ∆′ ` T <: [T/X]Bu

∆ ` ∃∆′.[T/X]N @: ∃X→[Bl Bu].N

(XS-Env)

Subtypes: ∆ ` B <: B

∆ ` B @: B′

∆ ` B <: B′

(S-SC)

∆ ` B <: B′′ ∆ ` B′′ <: B′

∆ ` B <: B′

(S-Trans)

∆(X) = [Bl Bu]

∆ ` ∃∅.X <: Bu

∆ ` Bl <: ∃∅.X
(S-Bound)

Figure 3.2: Tame FJ subclasses, extended subclasses, and subtypes.

3.1.2 Subtyping

The subclassing relation (@@:, which relates non-existential types, R), reflects the class hierar-

chy. Subclassing for type variables is restricted to reflexivity as type variables have no place

in the subclass hierarchy. Subtyping (<:) extends subclassing by adding subtyping between

existential types and between type variables and their bounds. Extended subclassing (@:) is an
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intermediate relation that expresses the class hierarchy (with the addition of a bottom type)

and the behaviour of wildcards and type variables as type parameters; extended subclassing is

used mainly to simplify the proofs of soundness. The three relations are defined in figure 3.2.

The rule XS-Env, adapted from Wild FJ [60], gives all the interesting variance properties

for wildcard types. It gives a subtype relationship between two existentially quantified class

types, where the bounds of the type parameters of the subtype are ‘more precise’ than those

of the supertype. The following relationships are given by this rule, given the class hierarchy

described in section 2.1 and using the shorthands described in section 3.1.1:

∅ ` Shape @: Shape

∅ ` List<Shape> @: ∃X.List<X>
∅ ` List<Shape> @: ∃X→[Circle Object].List<X>

∅ ` ∃X→[Circle Shape].List<X> @: ∃X→[Circle Object].List<X>

∅ ` ∃X.Pair<X, X> @: ∃Y,Z.Pair<Y, Z>

That the bounds of the type parameters are ‘more precise’ is expressed through the substitution

[T/X], where X are some of the parameters of the supertype and T are the corresponding

parameters in the subtype. The subtype checks in the premises of XS-Env ensure that T are

‘more precise’ than X; that is, that T are within the bounds of X. The first premise ensures that

free variables in the supertype cannot be captured in the subtype, thus forbidding erroneous

subtypes such as ∆ ` ∃X.C<X> @: C<X>. The second premise ensures that variables are not

introduced to the subtype which are not bound either in ∆ or ∆′. This is a limited form of

well-formedness constraint on the subtype, and is only used in the proof of soundness.

The rule XS-Env performs existential packing; the subtype is packed into the supertype.

XS-Env operates on types (as in Pizza [70], see section 2.3.7), as opposed to expressions in

traditional systems (see Fun-T-Unpack in section 2.3.2). The quantification of the subtype

in XS-Env (by ∆′) allows for a limited kind of unpacking in finding a supertype. It is limited

since there is no scope for the unpacked type variables to be used except in the bounds checking

premises.
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We use a nested overbar notation in the premises of XS-Env, for clarity we give the expansion

of the third premise, ∆, ∆′ ` [T/X]Bl <: T :

∆, ∆′ ` [T0/X0, T1/X1, ..., Tn/Xn]Bl0 <: T0

∆, ∆′ ` [T0/X0, T1/X1, ..., Tn/Xn]Bl1 <: T1

...

∆, ∆′ ` [T0/X0, T1/X1, ..., Tn/Xn]Bln <: Tn

Most type rules and lemmas are expressed in terms of subtyping. However, lemmas that concern

the standard object-oriented features of the language (such as field and method lookup) are

defined in terms of subclassing. We therefore need lemmas that link subtyping with subclassing.

This is done in two stages: lemma 17 (lemmas are numbered as they are defined in the proof

of type soundness given in appendix A) links subtyping to extended subclassing, and lemma

35 links extended subclassing to subclassing.

Lemma 17 (uBound refines subtyping) If ∆ ` T <: T′ and ` ∆ ok1 then

∆ ` uBound∆(T) @: uBound∆(T′).

This lemma states that if two types are subtypes then their upper bounds are extended sub-

classes. The uBound function (defined in figure 3.7) returns a non-variable type by recursively

finding the upper bound of a type until a non-variable type is reached. The interesting cases in

the proof are from the S-Bound rule, where T = ∃∅.X and T′ = Bu; then, by the definition of

uBound, we have that uBound(∃∅.X) = uBound(Bu), and are done by reflexivity. The other

S-Bound sub-case is where T = Bl and T′ = ∃∅.X, here we use ∆ ` uBound(Bl) @: uBound(Bu)

from F-Env and uBound(∃∅.X) = uBound(Bu), again from the definition of uBound. A corol-

lary to this lemma is that any two non-variable types which are subtypes, are also subclasses.

Lemma 35 (Extended subclassing gives subclassing) If ∆ ` ∃∆′.R′ @:

∃X→[Bl Bu].R and ∆ ` ok then there exists T where ` R′ @@: [T/X]R and ∆, ∆′ `
T <: [T/X]Bu and ∆, ∆′ ` [T/X]Bl <: T and fv(T) ⊆ dom(∆, ∆′).

1Well-formed environments are defined in section 3.1.3.
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This lemma states that for any types in an extended subclass relationship, a substitution can

be found so that there is a subclass relationship between the subtype and the substituted

supertype. The difference between subclassing and extended subclassing is, essentially, the

XS-Env rule. This rule finds an extended subclass of an existential type by substituting away

its existentially quantified type variables. This substitution corresponds to the one in the

conclusion of the lemma.

Well-formed types: ∆ ` B ok, ∆ ` P ok, ∆ ` R ok

X ∈ ∆

∆ ` X ok

(F-Var)

∆ `⊥ ok

(F-Bottom)

∆ ` Object<> ok

(F-Object)

∆ ` ? ok

(F-Star)

class C<X¢ Tu> ¢ N {...}
∆ ` T ok ∆ ` T <: [T/X]Tu

∆ ` C<T> ok

(F-Class)

∆ ` ∆′ ok
∆, ∆′ ` R ok

∆ ` ∃∆′.R ok

(F-Exist)

Well-formed type environments: ∆ ` ∆ ok

∆ ` ∅ ok

(F-Env-Empty)

∆, X→[Bl Bu], ∆
′ ` Bl ok ∆, X→[Bl Bu], ∆

′ ` Bu ok
∆ ` uBound∆(Bl) @: uBound∆(Bu)

∆ ` Bl <: Bu ∆, X→[Bl Bu] ` ∆′ ok

∆ ` X→[Bl Bu], ∆
′ ok

(F-Env)

Figure 3.3: Tame FJ well-formed types and type environments.

3.1.3 Well-formedness

Rules for judging well-formed types and type environments are given in figure 3.3. The rules

for well-formed type environments are the most interesting. There are two motivating issues:

we must not allow type variables which have upper and lower bounds that are unrelated in the

class hierarchy; and we must restrict forward references whilst allowing F-bounds.

The first issue can cause a problem where an environment could judge a subtype relation which
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does not reflect the class hierarchy. For example, an environment containing Z→[Fish Plant]

could judge (by using rule S-Bound and transitivity) that Fish is a subtype of Plant, which

is presumably incorrect. We therefore check that the bounds of a type variable are related

by subtyping under an environment without that type variable. We also require the stronger

subclass relationship to hold for the upper bounds of the type variable’s immediate bounds.

This ensures that subtype relationships judged by a well-formed environment respect the class

hierarchy. We need this property to prove lemma 17, described in section 3.1.2.

Method typing: ∆ ` M ok in C

∆′ = Y→[⊥ Tu] ∆ ` ∆′ ok ∆, ∆′ ` T, T ok
class C<X...> ¢ N {...}

∆, ∆′; x:T, this:∃∅.C<X> ` e : T | ∅ override(m, N, <Y¢ Tu>T→ T)

∆ ` <Y¢ Tu>T m(T x) {return e} ok in C

(T-Method)

mType(m, N) = <X¢ U>T→ T

override(m, N, <X¢ U>T→ T)

(T-Override)

mType(m, N) undefined

override(m, N, <X¢ U>T→ T)

(T-OverrideUndef)

Class typing: ` Q ok

∆ = X→[⊥ Tu] ∅ ` ∆ ok ∆ ` N, T ok ∆ ` M ok in C

` class C<X¢ Tu> ¢ N {T f; M} ok

(T-Class)

Figure 3.4: Tame FJ class and method typing rules.

Forward references are only allowed to occur as parameters of the bounding type. In the

well-formedness rule, this is addressed by allowing forward references when checking that the

bounds are well-formed types, but not when checking the subtype and subclass relationships of

the bounds. This reflects Java where (in a class or method declaration) <X¢ Y, Y¢ Object>

is illegal, due to the forward reference in the bound of X; however, <X¢ List<Y>, Y¢ Object>

is legal.
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3.1.4 Typing

Method and class type checking judgements are given in figure 3.4 and are mostly straightfor-

ward. The override relation allows method overriding, but does not allow overloading.

Expression typing: ∆; Γ ` e : T |∆

∆; Γ ` x : Γ(x) | ∅
(T-Var)

∆ ` C<T> ok

fields(C) = f fType(f, C<T>) =U

∆; Γ ` e : U | ∅
∆; Γ ` new C<T>(e) : ∃∅.C<T> | ∅

(T-New)

∆; Γ ` e : ∃∆′.N | ∅
fType(f, N) = T

∆; Γ ` e.f : T |∆′

(T-Field)

∆; Γ ` e : U |∆′ ∆, ∆′ ` U <: T
∆ ` ∆′ ok ∆ ` T ok

∆; Γ ` e : T | ∅
(T-Subs)

∆; Γ ` e : ∃∆′.N | ∅ mType(m, N) = <Y¢ B>U→ U

∆ ` P ok ∆; Γ ` e : ∃∆.R | ∅
match(sift(R, U, Y), P, Y, T)

∆, ∆′, ∆ ` T <: [T/Y]B ∆, ∆′, ∆ ` ∃∅.R <: [T/Y]U

∆; Γ ` e.<P>m(e) : [T/Y]U |∆′, ∆

(T-Invk)

Figure 3.5: Tame FJ expression typing rules.

Type rules for expressions are given in figure 3.5. Auxiliary functions used in typing are given

in figures 3.6 and 3.7.

The type checking judgement has the form ∆; Γ ` e : T |∆′, and should be read as

expression e has type T under the environments ∆ and Γ, guarded by environment

∆′ .

∆′ contains variables that have been unpacked from an existential type during type checking

and that could escape their scope. These variables are used with ∆ to judge some premises of

a rule. Any free variables in T are bound in either ∆ or ∆′.
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T-Subs is an extended subsumption rule: when ∆′ is empty, it allows an expression to be

typed with a supertype of the expression’s type in the usual way; when ∆′ is non-empty, it can

be used to remove the guarding environment from the judgement. Type checking of a Tame FJ

expression is finished when a type is found using an empty guarding environment (non-empty

guarding environments may only occur at intermediate stages in the derivation tree). This

ensures that no bound type variables escape the scope in which they are unpacked. The scope

covers the conclusions, some premises, and the derivations of these premises in the type rule in

which the variables are unbound. For example when ∆′ is empty, if x has type Square, we can

derive that x has type Shape:

∆; Γ ` x : Square | ∅ ∆ ` Square <: Shape
∆ ` ∅ ok ∆ ` Shape ok

∆; Γ ` x : Shape | ∅
(T-Subs)

In the next example we have a non-empty ∆′, we elide bounds for clarity; note that ∆, X `
List<X> <: ∃Z.List<Z> by XS-Env and S-SC:

∆; Γ ` x : List<X> | X ∆, X ` List<X> <: ∃Z.List<Z>
∆ ` X ok ∆ ` ∃Z.List<Z> ok

∆; Γ ` x : ∃Z.List<Z> | ∅
(T-Subs)

Typing of variables and ‘new’ expressions is done in the usual way. The lookup function fields

returns a sequence of the field names in a class, and fType takes a field and a class type and

returns the field’s type.

Type checking field access and method invocation expressions follows similar patterns: sub-

expressions are type checked and their types are unpacked, then some work is done using these

unpacked types, and a result type is found. The rule T-Subs may then be used to find a final

result type that does not require a guarding environment.
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Auxiliary Functions: uBound∆(B) and match(R, U, P, Y, T) and sift(R, U, Y)

uBound∆(B) =

{
uBound∆(Bu), if B = ∃∅.X and ∆(X) = [Bl Bu]

B, if B= ∃∅.X

∀j where Pj = ? : Yj ∈ fv(R′) ∀i where Pi 6= ? : Ti = Pi

` R @@: [T/Y,T′/X]R′

dom(∆) = X fv(T, T′) ∩ Y, X = ∅
match(〈R,∃∆.R′〉, P, Y, T)

X ∈ Y

sift((R, R), (∃∅.X, U), Y) =sift(R, U, Y)

X 6∈ Y sift(R, U, Y) = (R′, U′)
sift((R, R), (∃∅.X, U), Y) = 〈(R, R′), (∃∅.X, U′)〉

sift(∅, ∅, Y) = 〈∅, ∅〉
sift(R, U, Y) = (R′, U′)

sift((R, R), (∃∆.N, U), Y) = 〈(R, R′), (∃∆.N, U′)〉

Figure 3.6: Auxiliary functions for Tame FJ.

In the following paragraphs we describe unpacking and packing, descriptions of type checking

using T-Field and T-Invk, and give examples.

Unpacking an existential type (∃∆.R) entails separating the environment (∆) from the quan-

tified type (R). ∆ can be used to judge premises of a rule and must be added to the guarding

environment in the rule’s conclusion. R can be used without quantification in the rule; bound

type variables in R will now be free, we must take care that these do not escape the scope of

the type rule.

If the result of type checking an expression contains escaping type variables (indicated by a

non-empty guarding environment), then we must find a supertype (using T-Subs) in which

there are no free variables, and use this as the expression’s type. An escaping type variable may

be the whole type or a type parameter. If the escaping type variable is a type parameter (e.g.,

X in C<X>), the type may be packed to an existential type (e.g., ∃X.C<X>) using the subtyping
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Lookup Functions

fields(Object) = ∅

class C<X¢ Tu> ¢ D<...> {U f; M}
fields(D) = g

fields(C) = g, f

class C<X¢ Tu> ¢ N {U f; M} f 6∈ f

fType(f, C<T>) = fType(f, [T/X]N)

class C<X¢ Tu> ¢ N {U f; M}
fType(fi, C<T>) = [T/X]Ui

class C<X¢ Tu> ¢ N {U f; M} m 6∈ M

mBody(m, C<T>) = mBody(m, [T/X]N)

class C<X¢ Tu> ¢ N {U′ f; M}
<Y¢ T′u> U m(U x) {return e0;} ∈ M

mBody(m, C<T>) = (x; [T/X]e0)

class C<X¢ Tu> ¢ N {U f; M} m 6∈ M

mType(m, C<T>) = mType(m, [T/X]N)

class C<X¢ Tu> ¢ N {U′ f; M}
<Y¢ T′u> U m(U x) {return e0;} ∈ M

mType(m, C<T>) = [T/X](<Y¢ T′u>U→ U)

Figure 3.7: Method and field lookup functions for Tame FJ.

rule XS-Env. If the escaping type variable is the whole type, i.e., ∃∅.X, then the upper bound

of X can be used as the result type by using S-Bound.

Field access

In T-Field, the fType function applied to the unpacked type (N) of the receiver gives the

type of the field (T). Because T may contain type variables bound in the environment ∆′, the

judgement must be guarded by ∆′.

Example — Field access

The following example of the derivation of a type for a field access expression demonstrates the

sequence of unpacking, finding the field type, and finding a supertype that does not contain free

variables. In the example (figure 3.8), the type labelled 1 is unpacked to 2. The type labelled

3 would escape its scope, but its supertype (4) has no free variable and so may be used as the
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result type. We assume that the TreeNode<Y> class declaration has a field datum with type Y

and that Γ = x:∃X→[⊥ Shape].TreeNode<X>.

∅; Γ ` x : ∃X→[⊥ Shape].TreeNode<X>1 | ∅
fType(datum, TreeNode<X>2) = X3

∅; Γ ` x.datum : X3 | X→[⊥ Shape]2

(T-Field)

∅, X→[⊥ Shape] ` X3 <: Shape4

∅ ` X→[⊥ Shape] ok
∅ ` Shape4 ok

∅; Γ ` x.datum : Shape4 | ∅
(T-Subs)

Figure 3.8: Example of a derivation for field access.

Method Invocation

In T-Invk, function mType applied to the unpacked type (N) of the receiver gives the method’s

signature, <Y¢ B>U→U. We use the unpacked types (R) of the actual parameters and the match

function to infer any ‘missing’ (actual) type parameters (denoted by ? in our syntax, following

Wild FJ). The (possibly inferred) actual type parameters are substituted for formal parameters

([T/Y]) in the method’s type signature. After substitution, the actual type parameters (T) must

be within the formal bounds (B), and the types of the actual parameters must be subtypes of the

types of the formal parameters (U). These checks are performed under the type environment

∆, ∆′, ∆. Similarly to T-Field, we must guard the conclusion of the type rule with the

environments extracted by unpacking (∆′, ∆).

The substitution [T/Y] is determined using the types of actual (R) and formal parameters (U).

These types are filtered using the sift function before being passed to match. This ensures that

where the type of a formal parameter is one of the formal type parameters (Ui ∈ Y), the formals

and actuals at this position are not used for inference. Hence, we only infer the value of a type

variable based on its usage as a type parameter in the formal type of a value argument. The

match relation takes five arguments, but the first two are passed as a pair to facilitate the use

of sift. For example,

sift({M,N,O,P,Q}, {C<X>,C<Y>,∃X.C<X>,X,Z}, {Y,Z}) = 〈{M,N,O,P}, {C<X>,C<Y>,∃X.C<X>,X}〉



3.1. Tame FJ 106

Type parameter inference is done using the match relation (figure 3.6). All formal type param-

eters (Y) are substituted by types T. These types are either given explicitly, or are inferred if

left unspecified (i.e., marked with ?). The first premise of match ensures that any unspecified

type parameter can be inferred, i.e., it appears as a type parameter in a type of at least one

of the method’s formal value parameters. The second premise ensures that each specified type

parameter is used in the returned sequence. The remaining premises find a substitution that

allows subclassing between the formal and actual parameter types. Part of this substitution

will be the substitution of actual type parameters for formals, and these actual type parame-

ters are T. The remainder (T′) account for existentially quantified type variables in the formal

parameter types. These are forgotten, since in T-Invk we use full subtyping which allows us

to use the XS-Env rule to fulfil the same role. For example (assuming that B<X> is declared

as a subclass of C<X>):

X,Z ∈ fv({C<X>,C<Y>,∃U.D<U,Z>}) A = A

` B<V> @@: [V/X, A/Y, B/Z, A/U]C<X>

` C<A> @@: [V/X, A/Y, B/Z, A/U]C<Y>

` D<A,B> @@: [V/X, A/Y, B/Z, A/U]D<U,Z>

dom({U}) = {U} fv({V, A,B}, {A}) ∩ {X,Y,Z}, {U} = ∅
match(〈{B<V>,C<A>,D<A,B>}, {C<X>,C<Y>,∃U.D<U,Z>}〉, {?,A,?}, {X,Y,Z}, {V,A,B})

Examples — Method invocation

Example 1 from figure 2.5 demonstrates method invocation with a simple case of wildcard

capture. The existential type ∃Z.Tree<Z> is unpacked to Tree<Z>, and Z is inferred and

substituted for X. The return type (List<Z>) is then packed to the existential type ∃Z.List<Z>.
We show how the example can be type checked using the T-Invk and T-Subs rules (the

bounds of type variables are omitted for clarity) in figure 3.9; the type labelled 1 is unpacked

to 2 and the type labelled 3 is packed to 4. We omit from the derivation tree the call to

sift for clarity, note that sift(Tree<Z>2, Tree<X>, X) = (Tree<Z>2, Tree<X>). In this example

Γ = {this:C, y:∃Z.Tree<Z>}.

Example 2 from figure 2.6 expresses types that cannot be denoted using Java syntax. Using the
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∅; Γ ` this : C | ∅
mType(walk, C) = <X> Tree<X>→List<X>

∅; Γ ` y : ∃Z.Tree<Z>1 | ∅
match(〈Tree<Z>2, Tree<X>〉, ?, X, Z

2
)

Z2 ` Tree<Z>2 <: Tree<Z>

∅; Γ ` this.<?>walk(y) : List<Z>3 | Z2

(T-Invk)

Z2 ` List<Z>3 <: ∃Z.List<Z>4

∅ ` Z2 ok
∅ ` ∃Z.List<Z>4 ok

∅; Γ ` this.<?>walk(y) : ∃Z.List<Z>4 | ∅
(T-Subs)

Figure 3.9: Example of a derivation for method invocation.

syntax of existential types, it becomes clear why type checking fails at 1 (figure 3.10). Namely,

for the expression at 1 to be type correct, a T would need to be found so that

match(〈Pair<U, V>, Pair<X, X>〉, ?, X, T)

From the definition of match we see that T would have to satisfy ` Pair<U, V> @@: [T/X]Pair<X, X>;

no such T exists, and hence matching, and thus type checking, fails.

<X>Pair<X, X> make(List<X> x) {}
<X>void compare(Pair<X, X> x) {}
void m() {

∃U,V.Pair<U, V> p;
∃Z.List<Z> b;
this.<?>compare(p); //1, type incorrect
this.<?>compare(this.<?>make(b)); //2, OK

}

Figure 3.10: Example 2 in Tame FJ.

Type Inference

As is usual with formal type systems, we consider type inference to be performed in a separate

phase before type checking. Due to the presence of existential types, some inferred type param-

eters cannot be named and are marked with ?. These parameters must be inferred during type

checking. In T-Invk we only allow the inference of types where they are used as parameters

to an actual parameter type (e.g., X in <X>void m(Tree<X> x)...). This is enforced by the

sift function (defined in figure 3.6), which excludes pairs of actual and formal parameter types

where the formal parameter type is a formal type variable of the method.
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3.1.5 Operational Semantics

Computation: e ; e

fields(C) = f

new C<T>(v).fi ; vi

(R-Field)

v = new N(v′) v = new N(v′′)
mBody(m, N) = (x; e0) mType(m, N) = <Y¢ B>U → U

match(sift(N, U, Y), P, Y, T)

v.<P>m(v) ; [v/x, v/this, T/Y]e0

(R-Invk)

Congruence: e ; e

e ; e′

e.f ; e′.f

(RC-Field)

e ; e′

e.<P>m(e) ; e′.<P>m(e)

(RC-Inv-Recv)

ei ; e′i
e.<P>m(..ei..) ; e.<P>m(..e′i..)

(RC-Inv-Arg)

ei ; e′i
new C<T>(..ei..) ; new C<T>(..e′i..)

(RC-New-Arg)

Figure 3.11: Tame FJ reduction rules.

The operational semantics of Tame FJ is defined in figure 3.11. Most rules are simple and

similar to those in FGJ. The interesting rule is R-Invk, which requires actual type parameters

which do not include ?, these are found using the match relation. Avoiding the substitution of

? for a formal type variable in the method body prevents the creation of invalid expressions,

such as new C<?>(). Since we are dealing only with values when using this rule, there will be

no existential types and so all type parameters could be specified. However, there is no safe way

to substitute the appropriate types for ?s during execution because each ? may mark a different

type. In this rule, mBody (defined in figure 3.7) is used to lookup the body (an expression)

and the formal parameters of the method.
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3.1.6 Type Soundness

We show type soundness for Tame FJ by proving progress and subject reduction theorems (see

section 2.1.3), stated below. We prove these with empty environments since, at runtime, vari-

ables and type variables should not appear in expressions. A non-empty guarding environment

is required in the statement of the progress theorem, because we use structural induction over

the type rules; if this environment were empty, the inductive hypothesis could not be applied

in the case of T-Subs.

In the remainder of this section, we summarise some selected lemmas. All lemmas used in

the proof of these theorems are stated, along with the proofs of some interesting lemmas, in

appendix A. Full proofs of all lemmas can be downloaded from:

http://www.doc.ic.ac.uk/˜ncameron/papers/cameron ecoop08 full.pdf

Theorem 1 (Progress) For any ∆, e, T, if ∅; ∅ ` e : T |∆ then either e ; e′ or

there exists a v such that e = v.

Theorem 2 (Subject Reduction) For any e, e′, T, if ∅; ∅ ` e : T | ∅ and e ; e′

then ∅; ∅ ` e′ : T | ∅.

To prove these two theorems, 40 supporting lemmas are required. These establish ‘foundational’

properties of the system, properties of substitution, properties of subtyping and subclassing

(discussed in section 3.1.2), which functions and relations always give well-formed types, and

properties specific to each case of subject reduction and progress. Two of the most interesting

lemmas concern the match relation:

Lemma 36 (Subclassing preserves matching (receiver))

If ∆ ` ∃∆1.N1 @: ∃∆2.N2

and mType(m, N2) = <Y2 →[B2l B2u]>U2→U2

and mType(m, N1) = <Y1 →[B1l B1u]>U1→U1

and match(sift(R, U2, Y2), P, Y2, T)
and ∅ ` ∆ ok and ∆, ∆′ ` T ok

then match(sift(R, U1, Y1), P, Y1, T)
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Lemma 37 (Subclassing preserves matching (arguments))

If ∆ ` ∃∆1.R1 @: ∃∆2.R2

and match(sift(R2, U, Y), P, Y, T)

and fv(U) ∩ Z = ∅ and ∆2 = Z→[Bl Bu]

and ∅ ` ∆ ok

and ∆ ` ∃∆1.R1 ok
and ∆ ` P ok

then there exists U′

such that match(sift(R1, U, Y), P, Y, [U
′/Z]T)

and ∆, ∆1 ` U′ <: [U′/Z]Bu

and ∆, ∆1 ` [U′/Z]Bl <: U′

and ` R1 @@: [U′/Z]R2

and fv(U′) ⊆ ∆, ∆1

Lemma 36 states that if match succeeds with the formal parameter types of a superclass, then

match will succeed where the formal parameter types are taken from the (extended) subclass

(and the other arguments remain unchanged). Since overriding methods must have the same

parameter types and formal type variables as the methods they override, the proof should be

straightforward. However, it is complicated by extended subclassing of existential types; for

example, if a method m is declared to have a parameter with type Z in the class declaration

of class C<Z¢ Object>, then the type of m’s formal parameter will have type X when looked

up in ∃X.C<X> and A in C<A>. Type X may not be a subtype of A, even if C<A> is an extended

subclass of ∃X.C<X>. We show in the proof that such issues do not affect T, because these types

are found only from the actual parameter types of the method call.

Lemma 37 performs a similar duty, but for the types of the actual parameters. The conclusion

defines a ‘valid’ substitution which is given by lemma 35 (see section 3.1.2). The types T in

match are found from the actual parameter types and so, in contrast to lemma 36, these types

are affected by the substitution in the conclusion of the lemma.
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Lemma 31 (Inversion Lemma (object creation))

If ∆; Γ ` new C<T>(e) : T |∆′

then ∆′ = ∅
and ∆ ` C<T> ok and fields(C) = f

and fType(f, C<T>) =U

and ∆; Γ ` e : U | ∅
and ∆ ` ∃∅.C<T> <: T

Lemma 33 (Inversion Lemma (method invocation))

If ∆; Γ ` e.<P>m(e) : T |∆′

and ∅ ` ∆ ok
and ∆ ` ∆′ ok
and ∀x ∈ dom(Γ) : ∆ ` Γ(x) ok

then there exists ∆n

such that ∆′, ∆n = ∆′′, ∆
and ∆ ` ∆′, ∆n ok
and ∆; Γ ` e : ∃∆′′.N | ∅
and mType(m, N) = <Y¢ B>U→ U

and ∆; Γ ` e : ∃∆.R | ∅
and match(sift(R, U, Y), P, Y, T)
and ∆ ` P ok

and ∆, ∆′′, ∆ ` T <: [T/Y]B

and ∆, ∆′′, ∆ ` ∃∅.R <: [T/Y]U

and ∆, ∆′′, ∆n ` [T/Y]U <: T

The formulation of the inversion lemmas is made more interesting by the presence of the

guarding environment (∆′) in the typing judgement (∆; Γ ` e : T |∆′). In the case of object

creation (lemma 31) we show that the guarding environment must be empty. Intuitively, this

is because no existential types may be unpacked in the application of T-New, and T-Subs

can only shrink the guarding environment, but not add to it. This property of object creation

is used heavily in the proof of subject reduction since values in Tame FJ are object creation

expressions.

Method invocation is more complex; the guarding environment of T-Invk is formed from the

environments unpacked from the types of the receiver and arguments, but these may be re-

packed by applying T-Subs. The conclusion of lemma 33 is that there exists some environment,
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∆n, which, when concatenated with ∆′ will be equal to the unpacked environments from the

receiver and arguments.

Alpha conversion and Barendregt’s variable convention

As well as the standard use of alpha conversion to rename bound variables in existential types,

we also need to be able to rename type variables in the guarding environment, as in the following

lemma:

Lemma 7 (Alpha renaming of guarding environments)

If ∆; Γ ` e : T | X→[Bl Bu] and Y are fresh, then ∆; Γ ` e : [Y/X]T | Y→[[Y/X]Bl [Y/X]Bu].

Lemma 7 guarantees that we can rename variables in ∆′ and T and preserve typing. Thus, the

guarding environment can be thought of as binding its type variables; the scope of the binding

is T, the result of type checking. Note that we do not need to rename types in e. This is

because any type variables in the domain of the guarding environment (X) come from unpacked

existential types, and so cannot be explicitly named in the expression syntax; instead they

would be marked with ?.

In order to reduce the number of places where we need to apply alpha conversion in our proofs,

we make use of Barendregt’s variable convention [10]; i.e., we assume that bound and free

variables are distinct. For example, consider the proof of lemma 2 (appendix A):

Lemma 2 (Substitution preserves matching) If match(R,∃∆.R′, P, Y, U) and

(X ∪ fv(T)) ∩ Y) = ∅ then match([T/X]R, [T/X]∃∆.R′, [T/X]P, Y, [T/X]U).

We reach a point in the proofs where we have shown that

` [T/X]R @@: [T/X][U/Y,U′/Z]R′dom(∆) = Z(X ∪ fv(T)) ∩ Y) = ∅

we wish to show

` [T/X]R @@: [[T/X]U/Y,[T/X]U′/Z][T/X]R′
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and for this we require that Z are not free in T. We could have used alpha conversion on ∃∆.R′

to accomplish this; however, this would have required extensive renaming throughout the proof.

Instead, we use the variable convention and assume that Z are fresh at the point of becoming

free and we can proceed with an elegant proof.

The use of Barendregt’s variable convention is not always safe [91]. Sufficient conditions are

that all rules are equivariant and that any binders in a rule do not appear free in that rule’s

conclusion [91]. A rule is equivariant if any variables in the rule can be substituted (respecting

scope) by other variables and the rule remains valid. This requirement is easily satisfied by

most sensible inference rules, and is true of all rules in Tame FJ. Binders in Tame FJ are the

variables in quantified environments. The interesting rule is XS-Env, we must ensure that none

of X or the type variables in the domain of ∆′ appear free in ∃∆′.[T/X]N or ∃X→[Bl Bu].N.

This is ensured by the first two premises of XS-Env. Therefore, Tame FJ satisfies the stated

conditions and using Barendregt’s convention is safe.

3.2 Translating Java to Tame FJ

In this section we describe a possible translation from the Java subset which accommodates

wildcards into Tame FJ. Such a translation would consist of two phases. In the first phase, local

type inference [16], as performed by Java compilers, would decorate calls of any polymorphic

method with explicit type arguments, using ? where the arguments are wildcards. Wherever a

type parameter cannot be inferred (because it is existentially quantified), a ? can be used to give

a correct Tame FJ program. After this phase, the only remaining task, is to map Java types to

Tame FJ types. We give a few examples of translating (using E) method calls to show how ? s

are introduced, assuming that m in the type of x has type <U>.U→void, n:<U>.C<U>U→void,

and z:C<?>,
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E(x.<String>m("hello")) = x.<String>m("hello")

E(x.m("hello")) = x.<String>m("hello")

E(x.n(new C<String>())) = x.<?>n(new C<String>())

E(x.n(z)) = x.<?>n(z)

We work in a setting where we expect the first phase to have happened. Here we describe the

second phase, and define it in figure 3.13. In figure 3.12 we give the syntax of the relevant

subset of Java types, which are also those of Wild FJ.

Ns ::= C<Ts> Java class types
Ts ::= C<Ps> | X Java types
Ps ::= Ts | ? | ? ¢ Ts | ? ¤ Ts Java type parameters

Figure 3.12: Syntax of Java types.

The second phase is defined in terms of the functions T , P , and M, where T translates Java

types to Tame FJ types; P translates a type parameter to an environment and a Tame FJ type;

andM gives the minimal types out of two. The function T maps each occurrence of a wildcard,

?, in a Java type onto an existentially quantified type variable. To do this, it uses the function

P , which maps any Java type onto an environment and a Tame FJ type. T uses the collected

environments to create an existential type, using the M function to find the appropriate upper

bounds, and replaces each type argument by its image through P . Note that, in order to reduce

the notational complexity, the translation of non-wildcard type parameters introduces a type

variable which is never used; this is harmless.

We now highlight some of the finer points of the translation in terms of examples.

A wildcard that occurs as a type parameter is replaced by a quantified type variable. Bounds

on the wildcard become bounds on the quantifying type variable. Where bounds are not given

we use ∃∅.Object as the default upper bound and ⊥ as the default lower bound. For instance,

C<?¢ Shape> is translated to ∃X→[⊥ ∃∅.Shape].C<X>, and the translation of C<?¤ Shape>
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class C<X¢ Ts>... P∆(Ps) = (Y→ [Us U′s], T)

T∆(C<Ps>) = ∃Y→ [T∆(Us) M∆(T∆(U′s), [Y/X]T∆(Ts))] .C<T>

T∆(X) = ∃∅.X
∆ ` T <: T′

M∆(T, T′) = T = M∆(T′, T)
∆ ` T 6<: T′ ∆ ` T′ 6<: T

M∆(T′, T) = T

X is fresh

P∆(?) = (X→ [⊥ ∃∅.Object], X)
P∆(? ¢ Ts) = (X→ [⊥ T∆(Ts)], X)

P∆(? ¤ Ts) = (X→ [T∆(Ts) ∃∅.Object], X)
P∆(Ts) = (X→ [⊥ ∃∅.Object], T∆(Ts))

Figure 3.13: Translation from Java types to Tame FJ types.

amounts to ∃X→[∃∅.Shape ∃∅.Object].C<X>. We must distinguish different occurrences of

the wildcard symbol by translating them to distinct type variables. Hence, Pair<?, ?> trans-

lates to ∃X,Y.Pair<X, Y>. Finally, nested wildcards are quantified at the immediately enclosing

level, so C<C<C<?>>> translates to ∃∅.C<∃∅.C<∃X.C<X>>>.

A subtle aspect of the translation is that wildcards can inherit their upper bound from the

upper bound of the corresponding formal type variable in the class declaration. Since we

want to avoid doing this in the calculus, we must take care of this in the translation. For

example, for a class C declared as class C<Z¢ Circle>..., the type C<?> is translated to

∃X→[⊥ ∃∅.Circle].C<X>.

When an upper bound is declared both for a wildcard and in the corresponding class declaration,

then the ‘smallest’ type is taken as the upper bound, if the types are subtypes of each other

(M). Hence, C<?¢ Shape> is translated to the same type as in the previous example, and is not

a type error. Finally, if the bounds are unrelated, then the bound from the declaration is taken

as the upper bound of the wildcard, which means that even the type C<?¢ Serializable> is

translated into the same type as the previous two examples.

This last behaviour implies that the Java type analysis uses a more general type for some

expressions than it would have to in order to maintain soundness (in the example it could
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have used the intersection of Circle and Serializable, but it just uses Circle), and this

means that some reasonable and actually type safe programs are rejected by the Java compiler.

However, it poses no problems for the soundness of Java, nor for our translation.

The most interesting aspect of the translation is where wildcards meet F-bounds. An F-bounded

type is a type where the formal type variable is bounded by an expression in which the variable

itself occurs (see sections 2.2.1 and 2.4.3). In the following example both instantiations of F

using wildcards are legal.

class F<X ¢ F<X>> {...}
void m(F<?> x1, F<? ¢ F<?>> x2) {...}

The translation of the types F<?> and F<?¢ F<?>> is not immediately obvious, because in

Java there is no finite type expression for the least supertype of all legal type arguments to

F, i.e., the least upper bound of the type argument X is not denotable in Java. However, in

Tame FJ this upper bound is, in fact, denotable: it is just ∃Y→[⊥ F<Y>].F<Y>. Indeed, our

translation of F<?> gives this type. In the case of F<?¢ F<?>> where the wildcard is translated

to the fresh variable Y, the upper bound will be the least subtype of ∃Z.F<Z> (the translation

of the given bound; where Z is fresh) and F<Y> (the bound derived from the class declaration).

Since the latter is more strict, it is used, even though this appears to contradict the rule of

using fresh type variables for each wildcard; in fact it does no such thing, the second wildcard

is translated to a fresh type variable, but is then forgotten. This is under-defined in the Java

Language Specification [47], but we have tested this in several compilers (section 2.4.3). Note

that because the inherited bound is used in both types, x1 and x2 have the same type in Java

(which is denoted in Tame FJ as ∃Y→[⊥ F<Y>].F<Y>).

3.3 Discussion — Modelling Wildcards

It took many iterations and much work to arrive at Tame FJ. In this section we describe some

of the difficulties in formalising Java with wildcards. In section 3.3.2 we discuss the relationship
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between Tame FJ and traditional existential types systems and show why explicit packing and

unpacking cannot model Java wildcards.

Accommodating lower bounds in Tame FJ turned out to be delicate because we can always

derive that a declared lower bound is a subtype of the corresponding upper bound (by rules

S-Bound and S-Trans). We must ensure that, irrespective of the bounds declaration, the

bounds are indeed subtypes, i.e., that all subtyping in Tame FJ reflects the class hierarchy. We

do this in the rules for well-formed environments. We cannot simply check that the bounds

of a variable are subtypes without that variable, because we need to accommodate F-bounded

quantification (see section 2.2.1) and, therefore, the bounds of a variable might involve that

variable. The solution is to use extended subclassing, rather than subtyping, in F-Env; this is

described in section 3.1.3.

We separated subclassing from extended subclassing in order to reason about properties that

are invariant over the subclass hierarchy, but not over extended subclassing, such as field and

method types. In Tame FJ, the types of fields and methods can change between subtypes; this

cannot occur in FGJ [53] and most other object-oriented systems. In order to prove subject-

reduction we must regain some form of invariance of member types, this is done using the

subclassing relation. Subclassing has the same properties as subtyping in FGJ. Of course we

must now find circumstances for reducing subtyping to subclassing. This takes several lemmas

(described in section 3.1.2) that were delicate to formulate precisely and to prove.

Java does not have problems with well-formed bounds because only wildcards may have lower

bounds and the scope of these variables is limited to the expression where a wildcard type is

unpacked. However, in order to formalise type checking we must unpack the wildcard types

and use the quantified environments in the same way as environments from class or method

declarations. Separating these two kinds of environment complicates the rest of the formalism

unreasonably, and so we adopt the stratified subtyping approach described above.

Independently of lower bounds, F-bounded quantification means that we must quantify types

by a whole environment rather than a single formal variable (as is normally done with ex-

istential types [27, 64, 74]). Quantification by environments means that we must deal with
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equivalent types. There are two ways that types may be equivalent: by concatenation, for

example ∃∆1.∃∆2.T is equivalent to ∃∆1, ∆2.T, and involving unused variables, for example,

∃X,Y.C<X> is equivalent to ∃X.C<X>. An important special case of the second kind involves

empty environments, ∃∅.T would be equivalent to T. Introducing explicit equivalence rules is

problematic, because then the syntax of a type would not always correspond to its behaviour.

Instead, we force Tame FJ types into a normal form; all types are existential types quantified

by a single environment (∃∆.R) that may be empty (which corresponds to non-wildcard types).

Unfortunately this results in the somewhat ugly substitution rules concerning ∃∅.X.

Capture conversion of wildcards is difficult to model because there is no explicit unpacking and,

therefore, no easy way to name unpacked type variables. To type check a method call where

an actual type variable is quantified in the type in which it appears, we must be able to either

name the argument from outside its scope, or to infer it. Despite some effort, we were unable

to name the arguments, mainly because of the requirement to alpha convert quantified type

variables. For example,

<X>void m1(C<X> x) {...}

<X1,X2> void m2(C<X1> x1, C<X2> x2) {...}

<X>void m3(P<X,X> x) {...}

void ma(∃Y.C<Y> y, ∃Y,Z.P<Y,Z> p) {

this.<Y>m1(y); //1

this.<Y,Y>m2(y, y); //2

this.<Y>m3(p); //3

}

This code assumes that quantified type variables can be named outside of their scope. Method

call 1 is a call where this facility is used to avoid type parameter inference. However, there would

be a problem with call 2: y must be unpacked twice, which adds Y into the type environment

twice; however, this violates the invariant that type variables only occur once in the domain

of type environments. In Tame FJ we address this by renaming Y, but we cannot do this if Y

can be named once it is unpacked. Call 3 shows why it is necessary to maintain our invariant

about the domain of type environments. It should not type check, but would if we relax this

invariant (because Z could be renamed to Y).
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Therefore, we chose to infer type parameters. Formalising inference was difficult, in particular

we needed to be careful to avoid problems with subject reduction [60]. The essential design

decision is that we only infer substitutions of type variables which appear as parameters, not

those that appear as types in their own right. This alleviates soundness worries2 due to the

invariance of (non-quantified) type parameters. For example,

<X>void m4(C<X> x) {...}

<X>void m5(X x) {...}

void mb(∃Z.C<Z> z) {

this.<*>m4(z); //4

this.<*>m5(z); //5

}

This program has been incorrectly translated from Java to Tame FJ. Both method calls are

supported in Java3. However in Tame FJ, inferences is only supported in call 4 (call 5 can

be modelled, as long as the inference is performed as a preliminary step4; it is supported as

this.<∃Z.C<Z>>m5(z), which can be expressed in Java syntax as this.<C<?>>m5(z)). In m4

the formal type parameter that is inferred (X) appears as a parameter in the type C<X>, whereas

in m5, X appears as a type in its own right.

3.3.1 Some Previous attempts

We went through many failed attempts at modelling Java with wildcards. The most successful

was using fully explicit existential types which is described in the next section. Here we outline

some of the other ideas to illustrate the difficulties we encountered.

Straightforward approach using Java syntax. We attempted to model wildcards using

the Java syntax, this failed because there are types that can be expressed but not denoted in

Java and some therefore a more sophisticated syntax is required.

2We do not mean that Java is unsound or that there are problems with our formalisation, only that to
include the preliminary step of type inference in Tame FJ rather than keep it separate would prevent us proving
soundness.

3Although the syntax is this.m4(z).
4In contrast, call 4 cannot be expressed in Java without inference.
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‘On the fly’ existential types. We tried to prove Wild FJ [60] sound and, when that

failed due to the complexity of the system, tried to formulate our own system which generated

existential types on the fly. However, this makes for a complex system where it is difficult to

compare types between expressions.

Explicit unpacking, implicit packing. We used open expressions to unpack existential

types but subtyping to pack them. This caused problems with reduction, it was unclear how

to reduce open expressions without corresponding close expressions.

Allowing quantified variables to be used out of scope. In this system we allowed out

of scope quantified variables to be used as type parameters to method calls. This made for a

very simple system, but could not handle alpha conversion correctly.

Non-normalised existential types. We allowed quantification by multiple environments

and defined equivalence rules between existential types. Unfortunately the equivalence rules

broke the soundness proof.

Quantification of a single type variable. This is simpler than quantifying by an entire

environment, but does not allow us to model some F-bounded wildcard types.

There were many other attempts, which were, frankly, too embarrassingly wrong-headed to

describe here.

3.3.2 Wildcards and Existential Types

We developed ∃J [24]5 with the goal of formalising wildcards using explicit packing and un-

packing, keeping the formalism as close to that of classical existential types [26, 27, 64, 74, 75]

as possible. In this section we describe some of the elements of ∃J, compare it to Tame FJ, and

explain why ∃J cannot be extended to be a full model of wildcards.
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Q ::= class C<∆> ¢ N {T f; M} class declarations
M ::= <∆> T m(T x) {return e;} method declarations
e ::= x | e.f | e.<T>m(e) | new C<P>(e) expressions

| open e as x,X in e | close e with ∆ hiding T

v ::= new C<T>(v) | close v with ∆ hiding T values

N ::= C<T> | Object<> class types
R ::= N | X non-existential types
K ::= ∃∆.K | N non-variable types
T, U ::= K | X types

∆ ::= X→[Bl Bu] type environments
Γ ::= x:T environments

x, y variables
C, D, E, F classes
X, Y, Z type variables

Figure 3.14: Syntax of ∃J.

∆ ` U <: U′ ∆, X ¢U ` K <: K′

∆ ` ∃X ¢U.K <: ∃X ¢U′.K′

(S-Full)

∆ ` T′ ok ∆; Γ ` e : N

mType(m<T′>, N) = <X¢ T>U→ U

∆; Γ ` e : [T′/X]U ∆ ` T′ <: [T′/X]T
∆; Γ ` e.<T′>m(e) : [T′/X]U

(T-Invk)

∆; Γ ` e1 : ∃X¢ T.K

∆ ` ∃X¢ T.K ok
∆, X¢ T; Γ, x:K ` e2 : T ∆ ` T ok

∆; Γ ` open e1 as x,X in e2 : T

(T-Open)

∆′ = X→[Bl Bu]

∆; Γ ` e : [T/X]K ∆ ` T <: [T/X]T′

∆ ` ∃∆′.K ok

∆; Γ ` close e with ∆′ hiding T : ∃∆′.K

(T-Close)

Figure 3.15: Selected ∃J typing and subtyping rules.

We give the syntax of ∃J in figure 3.14 and some of its interesting rules in figure 3.15. Subtyping

in ∃J extends FGJ subtyping with the rule S-Full. S-Full allows subtyping between existen-

tial types and is almost identical to the subtyping rule from traditional systems we described

in section 2.3.2. Subtyping between existential and non-existential types does not exist in ∃J.

Explicit packing using close expressions is used instead. In comparison, Tame FJ subtyping

subsumes ∃J subtyping and also allows for packing types to existential types (in the XS-Env

5The version of ∃J we describe here is a slightly updated and extended version of our earlier work [24].
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rule). This models subtyping between wildcard and non-wildcard types in Java.

Method invocation (T-Invk) is much simpler than in Tame FJ since we do not have to perform

capture conversion of the receiver or parameters, nor infer type parameters. The requirements

that the receiver has class type (N) and that the types of formal and actual parameters match,

ensure that subexpressions will have been unpacked if necessary. Unlike Tame FJ, all actual

type parameters can be named, there is no need to infer type parameters. Unpacked type

variables will be nameable because they are declared in an open expression.

Packing and unpacking (in open and close expressions) proceeds as in traditional systems

(section 2.3.2). The only difference is that in ∃J, packing and unpacking operates on quantifying

environments as opposed to individual variables.

Java types are translated to ∃J types in the same way as in Tame FJ (section 3.2). To get a

valid ∃J program we must also translate expressions. Wherever capture conversion occurs in a

Java program, we must insert open expressions. Wherever subsumption would pack a type to

an existential type, we must insert close expressions. For example,

<X>void m (Box<X> x, Box<?> y) {

this.m(y, x);

}

Is translated to the following Tame FJ code:

<X>void m (Box<X> x, ∃Y.Box<Y> y) {

this.<*>m(y, x);

}

The same Java code is translated to the following ∃J code:

<X>void m (Box<X> x, ∃Y.Box<Y> y) {

open y as z,Z in

this.<Z>m(z, close x with Y hiding X);

}
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In Java Box<X> (the type of x) is a subtype of Box<?> (the type of y), to represent this

relationship in the ∃J program we must wrap x in a close expression. The type of close x...

is ∃Y.Box<Y>, which corresponds to Box<?>. So that we can name the fresh type variable Z

in the ∃J program, y must be unpacked. This is done implicitly in Java and Tame FJ, but

requires the open expression that surrounds the method call in ∃J.

Although ∃J is an elegant model for Java with wildcards, it is incomplete. There are two major

restrictions: ∃J does not support lower bounds on existential types and only expressions can

be packed.

The first problem may actually be orthogonal to the use of explicit packing and unpacking.

We believe that by adopting the Tame FJ treatment of subtyping, ∃J can be made to support

lower bounds. The only possible problem is that in Tame FJ (as in Java), the scope of an

unpacked variable (and thus any lower bound) is restricted to a single sub-expression, whereas

in ∃J it can be freely defined. Thus, there is more room for problems with lower bounds than

in Tame FJ; however, it is likely that there will not be a problem.

Because unpacking in ∃J is done in an expression rather than in subtyping, there are places

where a type could be packed in Java but not in ∃J. For example, when a type is instanti-

ated, subtyping is used to check that actual type parameters are within the declared bounds.

Existential packing in this context cannot be done in ∃J. So, if a type variable is bounded by

an existential type, then it can only ever be instantiated with an existential type. This is not

the case in Java; for example, if X is declared to have bound Box<?> we can instantiate X with

Box<Shape>, or any other Box. We have not found any encoding of such examples into ∃J.

Imperative Systems

Existential types can cause problems in low level imperative languages [49] (see section 2.3.6).

These problems do not affect Java because all objects are referred to by reference, objects

cannot be overwritten in memory. We show this by adapting the example from Cyclone given in

section 2.3.6 [49]. We use an imperative version of ∃J and the Box definition from section 2.2.1;
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A and B are unrelated classes:

∃X.Box<X> ba = new Box<A>;

∃X.Box<X> bb = new Box<B>;

open ba as x,Z in {

Z z = x.get();

ba = bb;

x.set(z);

}

The assignment ba = bb only affects the variable ba it does not affect the object that was

stored there. Therefore, x still holds a reference to the object of type Box<A>, not Box<B>. The

call to set assigns z (at runtime, containing an object with type A) to a field of type A, so there

is no unsoundness.

It would be straightforward, but time consuming, to add imperative features to Tame FJ. We

would add a assignment and a heap in a similar manner to Jo∃ (section 4.2); this should not

present any technical difficulty, nor make the proofs any different, only longer.

3.3.3 Decidability

Tame FJ is not designed with decidability in mind. Subtyping in Tame FJ is not syntax

directed, which is an important first step toward an algorithm for subtype checking. It would

be easy to refactor transitivity into the other subtype rules, however, the system would still

not be syntax directed because of overlap between XS-Env and XS-Sub-Class. A further

challenge to giving an algorithmic version of subtyping for Tame FJ is that in XS-Env, there

are many valid choices for T, any algorithm using a similar rule would involve backtracking.

We show in section 5.2.3 that Tame FJ subtyping and subtyping using separate rules for packing

and unpacking (as used in Pizza [70], see section 2.3.7) are almost equivalent. Since subtyping

using these rules is undecidable [95], Tame FJ subtyping may also be undecidable. However, the

argument from [95], and another for declaration-site variance [55], rely on multiple inheritance

(of interfaces for Java), and as such, it does not necessarily apply for Tame FJ.
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A decidability result for Tame FJ would not show that Java with wildcards is decidable since

Tame FJ is a significant abstraction of Java. An undecidability result would carry over to Java

if an expression type checks in Tame FJ if and only if it type checks in Java; we expect this

equivalence to hold.

3.4 Chapter Summary

In this chapter we have presented Tame FJ, an existential types model for Java with wildcards,

and shown that it is type safe. This is the first model for Java with wildcards that has been

proved sound. Tame FJ is innovative in that it uses guarding environments to ensure correct

repacking of existential type variables, several layers of subtyping, and a novel implementation

of type parameter inference. Our proofs have several novel features involving the relationship

between the subtype-like relations and auxiliary functions. We have discussed Tame FJ and

the difficulties in its design, namely, type parameter inference, lower bounds, expressible but

not denotable types, and capture conversion. We have presented a formal translation from a

subset of Java to Tame FJ, focusing on the translation of types. We have also presented ∃J, an

alternative and partial model for Java with wildcards that uses explicit packing and unpacking

and is thus closer to traditional models of existential types. ∃J cannot be made into a full

model for Java with wildcards because it cannot support unpacking of existential types outside

of the expression syntax, such as in well-formedness checks; ∃J does not support lower bounds,

but we do not believe this restriction is intrinsic to the model.



Chapter 4

Existential types for Context Variance

In this chapter, we suggest a novel use of existential types to support subtype variance in

ownership types systems. We begin by motivating subtype variance in ownership systems and

existential types as a possible solution (section 4.1). In section 4.2, we present and discuss

Jo∃, a calculus with existential types for subtype variance, combined with type genericity for

added expressivity. In section 4.3, we show how Jo∃ can be modified to support deep ownership

in Jo∃deep. In section 4.5, we discuss Jo∃wild
1, a more realistic variation of Jo∃ with implicit

packing and unpacking. We give proofs of type soundness and deep ownership in appendix B.

Contributions Although systems exist with variant ownership or existential quantification,

to the best of our knowledge, Jo∃ is the first language to use explicit existential types for

variance; it is also the first language to combine type parameterisation with variant contexts

and is thus more expressive than existing languages. We give a soundness proof for Jo∃ and a

proof of owners-as-dominators for Jo∃deep— to the best of our knowledge the first such proof

for an ownership language with variance.

1The ‘wild’ subscript refers to wildcards, since Jo∃wild uses implicit packing and unpacking of existential
types, similarly to Java wildcards.

126
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4.1 Motivation

Ownership types, as described in section 2.5, usually display invariant subtyping. As with

generics (section 2.2.1), allowing co- or contravariance without restrictions is unsound. Fur-

thermore, the encapsulation properties of ownership systems often rely on invariant subtyping.

For example, allowing restricted covariance could allow the programmer to violate the owners-

as-dominators property, even if the system was otherwise sound:

class C<oc> {

C<+oc> f;

}

class D<od> {

void m(C<od> c) {

c.f = new C<this>();

}

}

The class C appears safe, since (assuming standard variance annotation typing properties) we

cannot perform actions on f that require more information than the upper bound of the type

parameter (oc). The assignment in method m is legal using variance annotation typing (since

this is inside od). But c now holds a reference to an object that is neither owned by c, nor

outside c, thus violating owners-as-dominators.

Subtype variance for ownership types is an interesting and desirable feature that has been

tackled in many previous language designs [57, 23, 66, 67, 58] (section 2.5.3). However, none

of these approaches are entirely satisfactory: most permit only bivariance, none can express

constraints over more than one context parameter or between elements of an aggregate.

We address these issues by using existential quantification of contexts and type parametricity

to provide variance. This approach is more expressive, uniform, and transparent than previous

approaches. We compare our approach with related work in section 5.3 after comparison with

Tame FJ.
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4.1.1 Existential Types

The formalisation of variance using existential types is expressive and uniform. Compared to

existing approaches to ownership variance, existential types allow the expression of more types;

for example, a variant list with a single owner can be denoted ∃o.List<o, o>. Existential

types allow variant contexts to have both upper and lower bounds, previous approaches do

not support bounds or allow only one kind of bound on each context variable. Existential

quantification facilitates even more expressivity by integrating with type parameterisation (see

below); combining type parameterisation with variance annotations or ‘any’ contexts does not

improve expressivity.

Supporting owner polymorphic methods (see section 2.5) requires existential types. Variance

annotations are not expressive enough because capture conversion could be used to express

types that cannot be denoted in the syntax. Expressible but not denotable types also motivate

existential types for modelling wildcards (section 2.4.2).

Using existential types for variance allows us to connect this new problem with well-understood

type theoretic foundations for subtype variance and abstraction [26, 27, 49, 64, 74, 75] (sec-

tion 2.3).

4.1.2 Type Parameterisation

Type parameterisation lets us differentiate between, for example, GenericList<o1, Shape<o2>>,

a list of Shapes, and GenericList<o1, Animal<o2>>, a list of Animals; where GenericList is

defined as:

class GenericList<owner, X> {

X datum;

GenericList<owner, X> next;

}

By combining existential types with type parameterisation we can differentiate between a list

where each item has the same (unknown) owner, and a list where each item has a different
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owner. Using either existential types or variance annotations alone would require different

classes for each situation. By allowing classes to be parameterised by types as well as contexts,

we can express these different constraints using a single class, see section 4.2.2.

4.1.3 Example

In the following example (figure 4.1), we use o→[a b] to denote that the formal context

parameter o has the lower bound a and upper bound b, that is, any instantiation of o must be

inside b and outside a in the ownership hierarchy.

Our example figure 4.1 is part of a human resources system for a large company. Each worker

in the company is owned2 by its manager; the employees form a hierarchy with the director

at its root. In the Worker class, each worker keeps a list of his colleagues. This list uses the

GenericList class defined in section 4.1.2 to specify that it is a list of Workers and that each

colleague has the same manager as this (and works for the same company). In the Company

class, we store references to the director and the head of marketing, whose immediate manager

is the director3. We also keep a list of all workers managed (owned) by the headOfMarketing,

representing the marketing team.

So far, we have only used features present in classical ownership types systems. We use exis-

tential types where the precise owner of objects is unknown. In the Worker class, mentor is

some worker whose owner either works with or indirectly manages that worker, but who’s exact

position in the management hierarchy is not specified. A worker may work with some other

team of workers in the company (a team is assumed to have a single manager). For example,

an engineer may have contact with the management team. This group (workGroup) may have

any manager in the company, and this is represented by the existential type. Since we assume

all members of the group have the same owner, the existential quantification is outside the

GenericList.

2In terms of our ownership types, hopefully not in the real world.
3In the example we use fields as context parameters. This is not implemented in Jo∃, but is a relatively easy

extension. It is present in, for example, MOJO [23].
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class Worker<manager, company outside manager> {
GenericList<this, Worker<manager, company>> colleagues;
∃o→[⊥ company].GenericList<this, Worker<o, company>> workGroup;
∃o→[manager company].Worker<o, company> mentor;

void mixGroups() {
workGroup = close colleagues with o→[⊥ company] hiding manager;

open workGroup as w,m in {
//colleagues = w; ERROR
//colleagues.add(w.get(0)); ERROR
//w.add(colleagues.get(0)); ERROR

}
}

}

class Company extends Object<©> {
Worker<this, this> director;
Worker<director, this> headOfMarketing;
GenericList<this, Worker<headOfMarketing, this>> marketing;

∃o→[⊥ director].Worker<o, this> employeeOfTheMonth;
GenericList<this, ∃o→[⊥ this].Worker<o, this>> payroll;

<m> void processColleagues(Worker<m, this> w) {
for (Worker<m, this> c : w.colleagues) {

...
}

}

void processPayroll() {
for (∃o→[⊥ this].Worker<o, this> w : payroll) {

open w as x,m in {
...
this.<m>processColleagues(x);

}
}

}

void mentorEmpMonth() {
open employeeOfTheMonth as x,m in {

x.mentor =
close director with o→[m this] hiding this;

//x.mentor = ERROR
// close new Worker<headOfMarketing, this>()
// with o→[m this] hiding headOfMarketing;

}
}

}

Figure 4.1: Example: existential types for context variance.

In the Company class, the employeeOfTheMonth may be any Worker in the company, her man-

ager is not important. The payroll keeps track of every worker in the company. Each worker

on the payroll may have a different manager.
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The method mixGroups could be expressed in a more user-friendly syntax using implicit packing
and unpacking:

void mixGroups() {

workGroup = colleagues;

//colleagues = workGroup; ERROR

//colleagues.add(workGroup.get(0)); ERROR

//workGroup.add(colleagues.get(0)); ERROR

}

We can set workGroup to colleagues because manager (the owner workers in colleagues) is

within the bounds specified in the type of workGroup. We cannot set colleagues to workGroup,

nor add an element of colleagues to workGroup, because the workers in workGroup may have

any owner, not necessarily manager. Even though we can set workGroup to colleagues,

we cannot add an element of colleagues to workGroup because although the owner of the

workGroup may be any owner, it is a specific owner and not necessarily manager (here, the

manager is manager due to the earlier assignment, but in general it will be unknown). The

close syntax introduces a new context variable (o in the assignment in mixGroups) this is bound

by an existential quantifier in the type of the close expression; it cannot capture any similarly

named context variables.

The method processColleagues takes a worker (w) as a parameter and performs some action

on each of his colleagues. Since the method is polymorphic in the manager of w, we can name

the manager (m) as the owner of w’s colleagues, c. The method processPayroll performs some

action on each worker w in the payroll and their colleagues. Since the manager of each worker

in the payroll is abstracted, we have to open w in order to be able to name their manager

(m), in the example, to call processColleagues. This corresponds to wildcard capture in Java

(sections 2.4.2 and 3.1.4).

Owners-as-dominators Even in a deep ownership system it can be safe and desirable to sup-

port subtype variance. A Worker instance and his mentor (though not his workGroup) satisfy

owners-as-dominators in Jo∃deep. mentorEmpMonth sets the mentor of the employeeOfTheMonth

to the director. This preserves owners-as-dominators since the director must transitively
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manage (own) the employeeOfTheMonth, no matter who that is. The employeeOfTheMonth

must be unpacked and the director packed, as in previous methods.

Setting the employeeOfTheMonth’s mentor to a new worker owned by the headOfMarketing

would violate owners-as-dominators and is not allowed. This is because the employeeOfTheMonth

may not be transitively owned by the headOfMarketing. Type checking fails in the close ex-

pression because we cannot derive that m is inside headOfMarketing.

4.2 Jo∃

In this section we present Jo∃, a minimal, imperative, object-oriented language with parame-

terisation of methods and classes by context and type parameters, and existential quantification

of contexts. Jo∃ extends FGJ [53] (Jo∃ also restricts FGJ by omitting casting and type bounds

on type variables) and is similar in spirit to ∃J in its treatment of existential types [24] (sec-

tion 3.3.2). Some of the features of Jo∃ can be found in other formalisations of ownership types,

including Joe [32], ownership types for flexible alias protection [34], Joe3 [72], and OGJ [77, 78].

In order to demonstrate ownership properties, we include field assignment and a mutable heap.

We present Jo∃ in three flavours; firstly, we present Jo∃, a purely descriptive language, the

type system describes an ownership hierarchy but does not enforce encapsulation properties.

Type safety (section 4.2.6) guarantees that types accurately reflect the ownership hierarchy.

Secondly, we present Jo∃deep, an extension of Jo∃ that supports owners-as-dominators.

Subtype variance in Jo∃ is implemented by existential quantification. Existential types are

explicit and are introduced and eliminated by close and open expressions. In this way, we

follow the more traditional model of existential types [24], rather than the Java 5.0 approach

of using implicit packing and unpacking (see section 3.1). Thirdly, we discuss a system with

implicit packing and unpacking, Jo∃wild, in section 4.5.

Neither the ownership or existential quantification features of Jo∃ interact with subclassing.

Furthermore, the benefits of existential quantification in Jo∃ do not depend on subclassing, nor
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the absence of subclassing. For these reasons, and because the standard solution to subclassing

in ownership types systems is long known [32], we elide subclassing and inheritance. This

simplifies the presentation of Jo∃ and its proofs. Jo∃ could be extended to include subclassing

by extending the subtyping and method and field lookup rules following FGJ [53]. Subclassing

must preserve the formal owner of an object [32]. There are no changes to any of the rules

involving quantification.

We are primarily interested in type parameterisation to increase expressiveness of ownership

types, rather than to investigate features of generic types. We therefore treat type parame-

terisation simply and do not support bounds on formal type parameters, nor allow existential

quantification of type variables.

4.2.1 Syntax

The syntax of Jo∃ is given in figure 4.2. Entities only used at runtime are in grey . Jo∃
includes expressions for accessing variables (x, which may include this) and addresses (ι),

object creation, field access and assignment, method invocation, and packing and unpacking of

existential types. Jo∃ also includes null to handle uninitialised fields. These expressions are

discussed in detail in section 4.2.5.

Class and method declarations (Q and W) are parameterised by context (o) and type (X) param-

eters. The former have upper and lower bounds (bounds are actual context parameters — not

subtype bounds — and limit the bounded formal context to some part of the ownership hierar-

chy), and so methods and classes are considered to be parameterised by context environments

(∆). These are mappings from formal context parameters to their bounds (o→[bl bu]).

Contexts (a) consist of context variables (o), variables (x) and the world context, ©, the root of

the object hierarchy and the indirect owner of all objects. At runtime we may also use addresses.

Runtime contexts (r) are restricted to addresses and©. Bounds on context variables (b) consist

of contexts and the bottom owner ⊥. This is a theoretical context that is owned by all objects4.

4Due to the hierarchical nature of ownership, no object in any non-trivial program can have this property.
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e ::= null | x | γ.f | γ.f = e | γ.<a, T>m(e) | expressions
new C<a, T> | open e as x,o in e |
close e with o→[b b] hiding a | ι | err

Q ::= class C<∆, X> {T f; W} class declarations
W ::= <∆, X> T m(T x) {return e;} method declarations

v ::= close v with o→[b b] hiding r | ι | null | err values

N ::= C<a, T> class types

R ::= C<r, T> runtime types
M ::= N | X non-existential types
T ::= M | ∃∆.N types

a ::= o | x | © | ι actual owners

r ::= © | ι runtime owners

b ::= a | ⊥ bounds

Ψ ::= X→[bl bu] type environments

∆ ::= o→[bl bu] context environments
γ ::= x | ι | null variables and addresses
Γ ::= γ:T variable environments

H ::= ι →{R; f→v} heaps

x, y variables
X, Y type variables
o formal owners
C classes
ι addresses

Figure 4.2: Syntax of Jo∃.

Contexts may not be directly quantified, i.e., there is no entity of the form ∃o.o.

Variable environments, Γ, map variables to their types. Type environments, Ψ, map type

variables to bounds on a context. In contrast to Tame FJ, type variables do not have bounds

on the types they may take. The bounds contained in Ψ define upper and lower bounds on the

owner of the actual types. If the lower and upper bounds on the owner of X are bl and bu, then

for C<o> to instantiate X, o must be outside bl and inside bu. These bounds are manufactured

by the type system (in T-Class and T-Method in figure 4.7) and cannot be defined by the

programmer. In Jo∃ and Jo∃deep, upper bounds in Ψ are always © and, in effect, never used;
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however, we keep upper bounds for symmetry and to allow for easy extension. We only use the

lower bound to support deep ownership in Jo∃deep (in section 4.3). We could therefore elide

Ψ and just use a list of type variables, however, this does not make for a clean transition to

Jo∃deep.

To model execution we use a heap, H, which maps addresses (ι) to records representing objects.

Each record contains the type of the object and a mapping from field names to values. Values

(v) are addresses or close expressions that pack addresses. The type of an object is a runtime

type, R.

4.2.2 Types in Jo∃

The syntax of types in Jo∃ is also given in figure 4.2. Class types (N) are class names param-

eterised by actual type and context parameters. The first context parameter is the owner of

objects with that type. Class types may be existentially quantified by a context environment

to give existential types. For example, ∃o.GenericList<o, Animal> denotes a list owned by

some owner. For conciseness in examples, we omit bounds and empty parameter lists where

convenient. Only context variables (not type variables) may be quantified. For conciseness in

examples, we will omit bounds and empty parameter lists where convenient.

By combining existential quantification with type parameterisation we can express many inter-

esting and useful types:

∃o.GenericList<o, Animal<this>>

denotes a list owned by some unknown owner where each element is an Animal owned by this,

while

∃o1,o2.GenericList<o1, Animal<o2>>

denotes a list owned by some owner where all elements are owned by the same owner which

may be different from the owner of the list, and

∃o1.GenericList<o1, ∃o2.Animal<o2>>
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denotes a list where each element is owned by some owner and the owner of each element may

be different, finally,

∃o.GenericList<o, Animal<o>>

denotes a list where each element in the list and the list itself are owned by the same, unknown,

owner.

4.2.3 Subtyping and the Inside Relation

Subtyping ∆; Γ ` T <: T

∆; Γ ` M <: M

(S-Reflex)

∆; Γ ` ∆′ ¹ ∆′′

∆; Γ ` ∃∆′.N <: ∃∆′′.N

(S-Full)

Inside relations ∆; Γ ` b ¹ b ∆; Γ ` ∆ ¹ ∆

∆; Γ ` b ¹ b

(I-Reflex)

∆; Γ ` b ¹ b′′ ∆; Γ ` b′′ ¹ b′

∆; Γ ` b ¹ b′

(I-Trans)

∆; Γ ` b ok

∆; Γ ` b ¹ ©
(I-World)

∆; Γ ` b ok

∆; Γ `⊥¹ b

(I-Bottom)

Γ(γ) = C<a, T>

∆; Γ ` γ ¹ a0

(I-Owner)

∆(o) = [bl bu]

∆; Γ ` o ¹ bu

∆; Γ ` bl ¹ o

(I-Bound)

∆; Γ ` bu ¹ b′u ∆; Γ ` b′l ¹ bl

∆; Γ ` o→ [bl bu] ¹ o→ [b′l b′u]

(I-Env)

Figure 4.3: Jo∃ subtyping, and the inside relation for owners and environments.

The inside relation relates contexts and is defined by the rules given in figure 4.3. We say that

o1 is inside o2 (∆; Γ ` o1 ¹ o2), if o1 is transitively owned by o2. The inside relation is judged

by ∆ and Γ, however, Γ is only ever used to find the owner of variables, never there entire

type. The inside rule could be simplified by using a mapping from variables to their owners

rather than Γ, but this would complicate typing and well-formedness rules. The inside relation
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is reflexive, transitive, and has top and bottom elements — the world and bottom contexts,

respectively. I-Owner asserts that every variable and address is inside the declared owner of

its type (if its type is a class type). For example, if this has type C<o>, then this is inside o.

I-Bound gives that a formal context is within its bounds.

I-Env extends the inside relation to owner environments. We say that ∆1 is inside ∆2 (∆; Γ `
∆1 ¹ ∆2), if the domains of the two environments are identical and if the upper bounds of ∆1

are inside those of ∆2 and vice versa for the lower bounds. The intuition is that ∆1 is more

precise than ∆2.

Subtyping is also given in figure 4.3. Since there is no subclassing in Jo∃, subtyping of non-

existential types is given only by reflexivity. Subtyping between existential types follows the

full variant of existential subtyping (see Fun-S-Full in section 2.3.2). Existential types are

subtypes where the bounds of quantified contexts in the subtype are more strict than in the

supertype (given by I-Env). For example, ∃o → [⊥ this].C<o> is a subtype of ∃o →
[⊥ ©].C<o>, since this is inside ©. Non-existential types remain invariant.

4.2.4 Well-formedness

Well-formed contexts, types, and environments are given in figure 4.4. Owner variables (o)

and expression variables (x) are well-formed if they are in the domains of their respective

environments (∆ and Γ). In addition, the type of a variable must be a class type, this guarantees

precise information about all unquantified contexts, and that the set of contexts is closed under

substitution5. This restriction abides by the philosophy of existential types, whereby entities

with existential type must be unpacked to be used.

Well-formed class types (F-Class) require the class name to have been declared, the actual

context parameters to be within the bounds of the formal context parameters, the number of

5Forcing variables (x) used as contexts to have class type prevents them from having existential type. Since
the subtyping rules of Jo∃ preclude subtyping between existential and non-existential types, any value substi-
tuted for x must also have non-existential type (since subtyping is required for substitution). Since close values
have existential type, a close value cannot be substituted for x. Therefore, a type parameterised by a close
expression cannot be created by substitution.
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Well-formed contexts ∆; Γ ` b ok

o ∈ dom(∆)

∆; Γ ` o ok

(F-Owner)

Γ(γ) = N

∆; Γ ` γ ok

(F-Var)

∆; Γ ` © ok

(F-World)

∆; Γ `⊥ ok

(F-Bottom)

Well-formed types Ψ; ∆; Γ ` T ok

class C<o→[bl bu], X>... ∆; Γ ` a ok

∆; Γ, this:C<a, X> ` [a/o]bl ¹ a ∆; Γ, this:C<a, X> ` a ¹ [a/o]bu

Ψ; ∆; Γ ` T ok |T| = |X|
Ψ; ∆; Γ ` C<a, T> ok

(F-Class)

X ∈ dom(Ψ)

Ψ; ∆; Γ ` X ok

(F-Type-Var)

∆; Γ ` o→[bl bu] ok

Ψ; ∆, o→[bl bu]; Γ ` N ok

Ψ; ∆; Γ ` ∃o→[bl bu].N ok

(F-Exist)

Well-formed environments ∆; Γ ` ∆ ok

∆; Γ ` ∅ ok

(F-Empty)

∆; Γ ` bl, bu ok ∆; Γ ` bl ¹ bu

∆, o→[bl bu]; Γ ` ∆′ ok

∆; Γ ` o→[bl bu], ∆
′ ok

(F-Env)

Figure 4.4: Jo∃ well-formed contexts, types, and environments.

actual type parameters to match the number of formal type parameters, and the actual context

and type parameters to be well-formed.

To check that actual context parameters are within their corresponding bounds, the judging

environments are extended with this mapped to C<a, X>6. That is, the class type with actual

context parameters and formal type parameters. This is necessary because bl and bu may

involve this. We cannot substitute for this, because there may not be a variable or address

6An alternative to adding this to Γ is to add this→[⊥ a0] to ∆. This avoids the need to use X out of
scope, but if this is in dom(Γ), then we must explicitly rename it in Γ and a.
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that contains the object to be substituted. For example, to type check new N, we must check

that N is well-formed; we cannot substitute new N for this in a type. We use a mixture of actual

context parameters (a) and formal type parameters (X) because of the order of application of

substitution lemmas in the proofs. Using X is safe, even though X are not in scope, because the

type parameters of types are never used in the rules defining the inside relation. If this already

occurs in Γ then it must be renamed; we assume this happens implicitly by alpha conversion7.

A type variable is well-formed if it is in the domain of Ψ. An existential type, ∃∆.N, is well-

formed if ∆ is well-formed and N is well-formed under the judging environments extended with

∆.

A context environment, ∆, is well-formed if all bounds in the environment are well-formed and,

for each formal context, the lower bound is inside the upper bound. Well-formedness is defined

inductively, so bounds may not include forward references.8

4.2.5 Typing

Type rules for expressions are given in figure 4.5. Field and variable access (T-Field and

T-Var) are close to those of FGJ [53]. Field assignment (T-Assign) is a straightforward

extension of field access. We adopt the standard subsumption rule (T-Sub), which is simpler

than in Tame FJ, because we do not have guarding environments. In object creation (T-New),

we create uninitialised objects and do not have constructors. T-Null allows null to take any

well-formed type. Method invocation is also close to FGJ, with the addition that actual context

parameters must be well-formed and within their corresponding formal bounds.

In T-Field, T-Assign, and T-Invk, the receiver is restricted to γ. If we didn’t make this

7For example, assume we wish to check that C<this> is well-formed under {x:T1,this:T2} and ∆ where
C is defined as class C<o→[⊥ this]> {...}. The object this must be inside the upper bound of o. To
check this, we must extend Γ with this, which means renaming this in {x:T1,this:T2} and C<this>. The
judgement could become ∆; {x:T1,that:T2,this:C<that>} ` that ¹ this.

8For example,

∆1 = {o0 →[⊥ ©], o1 →[o0 ©]}
∆2 = {o0 →[o1 ©], o1 →[⊥ ©]}

Here, ∆1 is well-formed, but ∆2 is not, due to the forward reference in the lower bound of o0.
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Expression typing Ψ; ∆; Γ ` e : T

Ψ; ∆; Γ ` e : T′

∆; Γ ` T′ <: T
Ψ; ∆; Γ ` T ok

Ψ; ∆; Γ ` e : T

(T-Subs)

Ψ; ∆; Γ ` γ : N
fType(f, γ, N) = T

Ψ; ∆; Γ ` γ.f : T

(T-Field)

Ψ; ∆; Γ ` γ : N
fType(f, γ, N) = T

Ψ; ∆; Γ ` e : T

Ψ; ∆; Γ ` γ.f = e : T

(T-Assign)

Ψ; ∆; Γ ` γ : Γ(γ)

(T-Var)

Ψ; ∆; Γ ` C<a, U> ok

Ψ; ∆; Γ ` new C<a, U> : C<a, U>

(T-New)

Ψ; ∆; Γ ` T ok

Ψ; ∆; Γ ` null : T

(T-Null)

Ψ; ∆; Γ ` γ : N Ψ; ∆; Γ ` e : T

∆; Γ ` a ok Ψ; ∆; Γ ` U ok
mType∆;Γ(m<a, U>, γ, N) = T→T

Ψ; ∆; Γ ` γ.<a, U>m(e) : T

(T-Invk)

Ψ; ∆; Γ ` e : ∃o→[bl bu].N

Ψ; ∆, o→[bl bu]; Γ, x:N ` e′ : T
Ψ; ∆; Γ ` T ok

Ψ; ∆; Γ ` open e as x,o in e′ : T

(T-Open)

∆; Γ ` [a/o]bl ¹ a ∆; Γ ` a ¹ [a/o]bu ∆; Γ ` a ok

Ψ; ∆; Γ ` e : [a/o]N Ψ; ∆; Γ ` ∃o→[bl bu].N ok

Ψ; ∆; Γ ` close e with o→[bl bu] hiding a : ∃o→[bl bu].N

(T-Close)

Figure 4.5: Jo∃ expression typing rules.

restriction, then an arbitrary expression could be substituted for this which would require

dependent typing. There is no loss of expressivity because to use an expression e as a receiver

(for example to access f) we can use an open expression with empty o as a let expression, for

example, open e as x,∅ in x.f.

The lookup functions used to type check field access and assignment, and method invocation

are given in figure 4.6, these are fairly standard for this kind of calculus. fType, mBody, and

mType all take an extra parameter, the receiver of the field or method. This is substituted for

this, since this may occur in types in Jo∃. Similarly to F-Class, we must add this to Γ.

The odd mixture of actual context parameters and formal type parameters in the type of this

is a convenience for our proofs.
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class C<o→[bl bu], X> {U f; W}
fields(C) = f

class C<o→[bl bu], X> {U f; W}
fType(fi, γ, C<a, T>) = [a/o, T/X, γ/this]Ui

class C<o→[bl bu], X> {U′′ f; W}
<o′ →[b′l b′u], X′> T m(T x) {return e;} ∈ W

mBody(m<a′, U′>, γ, C<a, U>) = (x; [a/o, a′/o′, U/X, U′/X′, γ/this]e)

class C<o→[bl bu], X> {U′′ f; W} <o′ →[b′l b′u], X′> T m(T x) {return e;} ∈ W

∆; Γ, this:C<a, X> ` a′ ¹ [a/o, a′/o′]b
′
u ∆; Γ, this:C<a, X> ` [a/o, a′/o′]b

′
l ¹ a′

mType∆;Γ(m<a′, U′>, γ, C<a, U>) = [a/o, a′/o′, U/X, U′/X′, γ/this](T→ T)

Figure 4.6: Field and method lookup functions for Jo∃.

To type check open and close expressions we follow Fun [27] and other classical existential

types systems (see section 2.3.2). T-Open is similar to Fun-T-Open, except that we are

dealing with contexts rather than types. The type of expression e is unpacked to an owner

environment, o→[bl bu], and un-quantified type, N. We then judge the body of open (e′) by

extending ∆ with o→[bl bu] and adding a fresh variable, x, with type N to Γ; where x stands

for the unpacked value of e. We ensure no variables escape the scope of the open expression

by checking that the result type, T, is well-formed in an environment which does not contain o

or x.

A close expression packs an expression e by hiding some of the context parameters present in e’s

type. For example, if e has type C<this>, then the expression close e with o hiding this

has the existential type ∃o.C<o>.

Type rules for methods and classes are given in figure 4.7. A class is well-typed if for all

methods, the types of all fields, and the bounds of all formal context parameters are well-

formed. Similarly, a method is well-typed if the return type, types of parameters, and bounds

on formal context parameters are well-formed. The method body (e) must have the declared

return type of the method. In these rules we use type environments, Ψ and Ψ′, always using ⊥
and © as bounds. In section 4.3 we will use different lower bounds.
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Class typing ` Q ok

Ψ = X→[⊥ ©]

∅; this:C<o, X> ` o→[bl bu] ok Ψ; o→[bl bu]; this:C<o, X> ` W, T ok

` class C<o→[bl bu], X> {T f; W} ok

(T-Class)

Method typing Ψ; ∆; Γ ` W ok

Ψ′ = Ψ, X→[⊥ ©] ∆′ = ∆, o→[bl bu] Γ = this:C<o′, Y>, x:T

∆; this:C<o′, Y> ` o→[bl bu] ok Ψ′; ∆′; this:C<o′, Y> ` T, T ok
Ψ′; ∆′; Γ ` e : T

Ψ; ∆; this:C<o′, Y> ` <o→[bl bu], Y>T m(T x) {return e;} ok

(T-Method)

Figure 4.7: Jo∃ typing rules for classes and methods.

4.2.6 Dynamic Semantics

The operational semantics of Jo∃ is defined by the reduction rules given in figure 4.8 and

figure 4.9.

The notation m[i 7→ x], used in R-Assign, gives the mapping m, modified to map i to x.

Method invocation, R-Invk, is similar to Tame FJ; however, most substitutions are performed

by the function mBody (figure 4.6). For example, if H = {1 → Obj1, 2 → Obj1, 3 → Obj1}
where we use Obji to denote an object in the heap, then H[2 7→ Obj4] = {1 → Obj1, 2 →
Obj4, 3 → Obj1}.

R-Open-Close is taken from the classical formulations of existential types [64, 74] (see Fun-

R-Open-Pack in section 2.3.2). It reduces open and close expressions together by eliminating

the open and close sub-expressions, leaving the body of open (e) with formal variables replaced

by the packed value and hidden contexts. For example, where 2 and 3 are addresses in the

heap,

open

close 3 with o hiding 2

as x,o in

this.<o>m(x);
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Computation e;H ; e;H

H(ι) = {R; f→v}
ι.fi;H ; vi;H

(R-Field)

H(ι) = {R; f→v}
H′ = H[ι 7→ {R; f→v[fi 7→ v]}]

ι.fi = v;H ; v;H′

(R-Assign)

H(ι) undefined fields(C) = f

H′ = H, ι → {C<r, T>; f→null}
new C<r, T>;H ; ι;H′

(R-New)

H(ι) = {R; ...}
mBody(m<r, γ, T>, R) = (x; e)

ι.<r, T>m(v);H ; [v/x]e;H
(R-Invk)

open (close v with o→[bl bu] hiding r) as x,o in e;H ; [r/o, v/x]e;H
(R-Open-Close)

Congruence e;H ; e;H

e′;H ; e′′;H′ e′′ 6= err

ι.f = e′;H ; ι.f = e′′;H′

(RC-Assign)

ei;H ; e′i;H′ e′i 6= err

ι.<r, R>m(v, ei, e);H ; ι.<r, R>m(v, e′i, e);H′

(RC-Invk)

e;H ; e′′;H′ e′′ 6= err

open e as x,o in e′;H ; open e′′ as x,o in e
′;H′

(RC-Open)

e;H ; e′;H′ e′ 6= err

close e with o→[bl bu] hiding r;H ; close e′ with o→[bl bu] hiding r;H′

(RC-Close)

Figure 4.8: Jo∃ reduction rules.

reduces to: this.<2>m(3) (we replace x by 3 and o by 2).

Object creation is performed in R-New which appends a new object record to the heap at an

unused address. The new object is created with all its fields set to null; i.e., we do not support

constructors. This approach contrasts with Tame FJ, Wild FJ [60], and similar formalisms,

where objects are created with all fields assigned and no null entity. Whilst that is a simple

protocol, it does not extend to ownership systems, since we might have to name the newly
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Exceptional computation e;H ; e;H

null.f;H ; err;H
(R-Field-Null)

null.f = e;H ; err;H
(R-Assign-Null)

null.<r, T>m(e);H ; err;H
(R-Invk-Null)

e′;H ; err;H′

ι.f = e′;H ; err;H′

(RC-Assign-Err)

ei;H ; err;H′

ι.<r, T>m(v, ei, e);H ; err;H′

(RC-Invk-Err)

e;H ; err;H′

close e with o→[bl bu] hiding r;H ; err;H′

(RC-Close-Err)

e;H ; err;H′

open e as x,o in e′;H ; err;H′

(RC-Open-Err)

Figure 4.9: Jo∃ reduction rules for null and error propagation.

created object to assign into a field. For example, if we have a class C<o> with a single field f

with type D<this>, there is no way to initialise f in a Tame FJ style constructor. This can be

done using Jo∃ constructors:

C<o1> c = new C<o1>;

c.f = new D<c>;

An alternative object construction protocol is used in MOJO [23]. In this system there are no

constructors, but fields are initialised to default objects (each field is initialised to an object

of the declared type) rather than null. The MOJO protocol is motivated by final fields, not

present in Jo∃. It is more complex than the Jo∃ approach, but avoids null expressions and

the associated definitions.

In order to support null we give rules (R-...-Null) to handle null pointer exceptions, these

occur when null appears as the receiver in an expression. These rules result in an error

configuration consisting of a heap and err. Rules RC-...-Err propagate these errors to the

top level.
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Values in Jo∃ consist of addresses in the heap, addresses wrapped in a close expression, and

null and err values (which are described above). A close value represents an address that is

referred to in a variable with existential type. The close wrapper does not affect the address’s

behaviour or place in the heap, except to restrict access by obscuring the address’s type.

Well-formed heaps and configurations ∆ ` H ok ∆;H ` e ok

∀ι → {C<r, T>; f→v} ∈ H :
∅; ∆;H ` C<r, T> ok

fType(f, ι, C<r, T>) = T′ ∅; ∆;H ` v : T′

∀v ∈ v : add(v) defined⇒ add(v) ∈ dom(H)

∆ ` H ok

(F-Heap)

∆ ` H ok
∀ι ∈ fv(e) : ι ∈ dom(H)

∆;H ` e ok

(F-Config)

Figure 4.10: Jo∃ well-formed heaps and configurations.

In figure 4.10 we give the definitions of well-formed heaps and configurations; these are used in

the proof of properties of Jo∃. A heap is well-formed if each object in the heap has a well-formed

runtime type and each value stored in the fields of each object has the type of that field. Most

premises are standard. We insist that the addresses of all referenced values are in the domain

of the heap. The address of a value is given by the partial function add, defined as:

add(v) =





ι, if v = ι

add(v′), if v = close v′...

undefined, otherwise

which recursively unwraps abstract packages, returning the address within. Thus, add(v) is

defined if v is neither null nor null wrapped in a close expression.

A configuration consists of a heap and an expression. A configuration is well-formed if the heap

is well-formed and any addresses in the expression are in the domain of the heap.

At runtime, we wish to use a heap as a variable environment (Γ) in Jo∃ judgements. We

formalise this notion in the rules H-..., given in figure 4.11. In these rules we extract the

addresses and their types from the heap and add these to the environment Γ.
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H = ι →{R; ...}
∆; ι:R, Γ ` b ¹ b′

∆;H, Γ ` b ¹ b′

(H-I)

H = ι →{R; ...}
∆; ι:R, Γ ` T <: T′

∆;H, Γ ` T <: T′

(H-S)

H = ι →{R; ...}
∆; ι:R, Γ ` b ok

∆;H, Γ ` b ok

(H-FO)

H = ι →{R; ...}
∆; ι:R, Γ ` ∆′ ok

∆;H, Γ ` ∆′ ok

(H-F-Env)

H = ι →{R; ...}
Ψ; ∆; ι:R, Γ ` T ok

Ψ; ∆;H, Γ ` T ok

(H-F)

H = ι →{R; ...}
Ψ; ∆; ι:R, Γ ` e : T

Ψ; ∆;H, Γ ` e : T

(H-T)

Figure 4.11: Using the heap as an environment in Jo∃.

Type Soundness

Type soundness in Jo∃ guarantees that the types of variables accurately reflect their contents,

including ownership information. Furthermore, the ownership hierarchy defined statically in a

program describes the heap when that program is executed. Although these properties do not

constitute an encapsulation property, they are necessary when using ownership information to

reason about programs, for example using effects [32]. We show type soundness for Jo∃ by

proving progress and preservation (subject reduction) properties (see section 2.1.3):

Theorem (progress) For any H, e, T, if ∅; ∅;H ` e : T and ∅ ` H ok then either

there exists e’, H’ such that e;H ; e′;H′ or there exists v such that e = v.

Theorem (subject reduction) For any ∆,H,H′, e, e′, T, if ∅; ∆;H ` e : T and

e;H ; e′;H′ and ∆;H ` e ok and ∅;H ` ∆ ok and e′ 6= err then ∅; ∆;H′ ` e′ : T

and ∆;H′ ` e′ ok.

In these proofs we make use of well-formed variable environments (Γ). We simply require that

all types in the range of Γ are well-formed:

Ψ; ∆; Γ ` T ok

Ψ; ∆ ` γ:T ok

(F-Gamma)
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The proof of soundness for Jo∃ is fairly straightforward, though long and intricate (53 lem-

mas). We require many common sense properties (weakening, inversion, etc.); three sets of

substitution lemmas: to deal with substitution of types for type variables (T/X), actual context

parameters for formal (a/o), and values for variables (v/x); properties of well-formed types;

properties that ensure well-formedness as the result of typing; and properties of the heap at

runtime.

4.3 Deep Ownership

Owners-as-dominators is a strong encapsulation property found in deep ownership systems

(section 2.5.1). A heap satisfies the owners-as-dominators property if, for any reference in the

heap H ` ι → ι′ (we use → to mean that ι holds a reference to ι′), ι is inside the owner of ι′

[30], see section 2.5.1. It has not been clear that a system with variant subtyping can support

owners-as-dominators; invariance of an object’s owner has been a crucial element in proving

owners-as-dominators in previous systems. We show that it is possible to enforce owners-as-

dominators in a system with subtype variance by relying on the lower bounds of existential

types.

Owner Lookup Functions ownΨ(T) glb(b) ownH(v)

ownΨ(C<a, T>) = a0

Ψ(X) = [bl bu]

ownΨ(X) = bl ownΨ(∃∆.C<a, T>) = glb∆(a0)

b 6∈ dom(∆)

glb∆(b) = b

∆(o) = [bl bu]

glb∆(o) = glb∆(bl)

H(ι) = {C<r, T> ...}
ownH(ι) = r0 ownH(close v with o→[bl bu] hiding r) = ownH(v)

Figure 4.12: Owner lookup functions for Jo∃deep.

Jo∃deep enforces the owners-as-dominators property. It differs from Jo∃ only in its definition of
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well-formed types, heaps, and classes. We give auxiliary functions used to find the owner of an

object in the heap (ownH(v)) and the owner of objects with type T (ownΨ(T)) in figure 4.12.

We use ownH to define the owners-as-dominators property of a well-formed heap.

In effect, ownH does not distinguish regular objects from objects that are abstracted by close

expressions. Our first attempt was to use the first context parameter of the type of v as

ownH(v). Although simple, the result may be a context that is out of scope, if it is existentially

quantified in the type of v, and less precise than the owner of the hidden object. For example,

if v has type ∃o→[b a].C<o, b>, then using o as the result of ownH then it would be out of

scope. Including the quantifying environment in the result of ownH addresses the scope issue,

but the result is still not precise enough. In our example, the hidden owner of v will be some

precise context, but the bounds on o will only give a partial description of that context. Our

second attempt substituted the hidden contexts of close for the hiding contexts. For example,

ownH(close v with o→[bl bu] hiding r) would be [r/o]o0 where o0 is the first context

parameter in the type of close v with o→[bl bu] hiding r. This gives the same results as

the current definition, but is more complicated.

The owner of objects of type X is the lower bound on the owner of X, recorded in Ψ. To find

the owner of objects with existential type (∃∆.C<a, T>), we must find a context that is not

quantified and that is inside the declared owner of the type (a0). This is accomplished by the

glb function; glb∆(b) finds the outermost object that is inside b and not in the domain of ∆.

This is done by repeatedly taking the lower bound of any formal owner in ∆. To see how this

works, consider the following three examples:

1. ownΨ(∃o→[o2 ©].C<o1, o>) = glb{o→[o2 ©]}(o1) = o1

2. ownΨ(∃o→[o2 ©].C<o>) = glb{o→[o2 ©]}(o) = o2

3. ownΨ(∃o1→[o3 ©],o2→[o1 ©].C<o2>) = glb{o1→[o3 ©],o2→[o1 ©]}(o2) = o3

Example 1 demonstrates the simplest case where the owner (o1) in a type is unquantified,

the result of ownΨ is simply 01. The function glb has no affect on o1 since o1 is not in the

environment passed to glb (o→[o2 ©]). Example 2 the owner in the type (o) is a quantified
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type, but o’s lower bound is not in the domain of the quantifying environment and so can be

used as the greatest lower bound. In example 3 both the owner in the type (o2) and its lower

bound (o1) are in the quantifying environment so we must keep taking the lower bound to get

o3 which is not in the environment.

The owners-as-dominators property manifests itself as an extra constraint on well-formed heaps,

highlighted with a box :

∀ι → {C<r, T>; f→v} ∈ H :
∅; ∆;H ` C<r, T> ok

fType(f, ι, C<r, T>) = T′ ∅; ∆;H ` v : T′

∀v ∈ v : add(v) defined ⇒ add(v) ∈ dom(H) ∆;H ` ι ¹ ownH(vi)

∆ ` H ok

(F-Heap)

Jo∃deep requires some modifications to the well-formedness rules for classes and class types of

Jo∃:

Ψ = X→[o0 ©]

∅; this:C<o, X> ` o→[bl bu] ok Ψ; o→[bl bu]; this:C<o, X> ` W, T ok

⊥6∈ T, o→[bl bu]

` class C<o→[bl bu], X> {T f; W} ok

(T-Class)

class C<o→[bl bu], X>... ∆; Γ ` a ok

∆; Γ, this:C<a, X> ` [a/o]bl ¹ a ∆; Γ, this:C<a, X> ` a ¹ [a/o]bu

∀ai ∈ a : ∆; Γ ` a0 ¹ ai ∀Ti ∈ T : ∆; Γ ` a0 ¹ ownΨ(Ti)

Ψ; ∆; Γ ` T ok |T| = |X|
Ψ; ∆; Γ ` C<a, T> ok

(F-Class)

The extra premises in F-Class (together with the well-formedness rules for contexts) ensure

that only contexts that are outside an object can be formed by substitution of actual for formal

parameters in its class. The owner of an object (a0) is, by definition, outside that object.
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The first extra premise ensures that the actual context parameters are outside a0. The second

premise ensures that the owners of any actual type parameters are outside a0. Therefore, all

types formed by substitution of either contexts or types will have an owner outside this.

In the following example (figure 4.13), all types are well-formed in Jo∃ and the types of f1, f3,

and f5 are well-formed in Jo∃deep, but the types of f2, f4, and f6 are not. The types of f2, f4,

and f6 are malformed because of the additional premises in F-Class. The data in the lists

f2 and f4 are owned by this, which is inside o. The data in f6 is owned by some owner, but

there is no guarantee that this owner is outside o. Therefore, these lists can hold references

into an object’s representation, as shown in m(), which violates owners-as-dominators.

class C<o> {
List<this, o> f1; //OK
List<o, this> f2; //type error

GenericList<this, Object<o>> f3; //OK
GenericList<o, Object<this>> f4; //type error

∃oo→[o ©].GenericList<this, Object<oo>> f5; //OK
∃oo→[⊥ o].GenericList<this, Object<oo>> f6; //type error

void m() {
f1.datum = new Object<o>();
f2.datum = new Object<this>(); //breaks o-as-d
f3.datum = new Object<o>();
f4.datum = new Object<this>(); //breaks o-as-d
f5.datum = close new Object<o>() with oo→[o ©] hiding o;
f6.datum = close new Object<this>() with oo→[⊥ o] hiding this;

//breaks o-as-d
}

}

Figure 4.13: Example: owners-as-dominators.

In T-Class we change the way Ψ is created; the lower bounds in Ψ are the formal owner of

the class rather than ⊥. This is required because of the changes we made to F-Class. F-

Class requires that the owner of actual type parameters are outside that object’s owner, the

changes to T-Class allow formal type parameters to satisfy this requirement. For example,

the following class declaration would not type check without this change:

class C<o, X> {

C<o, X> f;

}
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If Ψ had not been changed, C<o, X> would not be well-formed because ownΨ(X) could not be

derived to be outside o.

The second extra premise of T-Class ensures that ⊥ cannot appear as a bound in the formal

context parameters of the class9, nor in any existential types given to fields in the class10. The

intention is to ensure that the owner of all objects referenced by objects of the class (including

the hidden owner of objects with existential type) is outside the referring object. This is done

by restricting nameable contexts to the class’s formal context parameters (which are outside

this by definition in the case of the owner, and F-Class and T-Class for the other contexts),

this, and ©. Thus, any type in the class declaration has an owner that is guaranteed (together

with the constraints on substitution in F-Class) to be outside this. If a field f is declared to

have an existentially quantified owner, the hidden owner of objects in f must be in the range

defined by the declared bounds. Since we can only name contexts outside this, the lower

bound, and, thus, the entire range of possible owners, is outside this.

We state that the owners-as-dominators property in Jo∃deep holds:

Theorem (Owners-as-dominators) For anyH, if ∆ ` H ok then ∀ι → {R; {f→ v}} ∈
H, ∀vi ∈ v : ∆;H ` ι ¹ ownH(vi)

This theorem states that For all well-formed heaps, all references to a value come from inside

the owner (as defined by ownH) of that value. It is given by the added premise to F-Heap; we

prove that this premise is maintained under execution as part of the proof of subject-reduction.

The proof is given in appendix B.

We require several extra lemmas (12) and adjustments to lemmas (such as weakening and

substitution lemmas) to handle the extra functions and premises we have introduced. The real

work is in proving that the ownership invariant in F-Heap is preserved in the R-Assign case

of subject reduction. In this case, we must show that the owner of the new value (v) in the

9In this premise, we use 6∈ to mean “does not appear anywhere in”, this is a little informal, but corresponds
to not being in the set of free variables of an expression or type, except that ⊥ is not a variable.

10It would be easier to forbid ⊥ occurring at all by removing F-Bottom and I-Bottom. However, to
allow maximum flexibility of polymorphic methods, we allow ⊥ in the bounds of their formal context and type
parameters.
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field of the assigned object (with address ι) is outside ι. We will describe the lemmas that are

used to do this.

We show that an object is inside (or equal to) the declared owner of each of its fields (lemma

61). The proof of this lemma relies on the premises added to F-Class and T-Class. We

show that the only context parameters that can be named (and thus the declared owners of all

fields) are outside (or equal to) the object in which the fields occur. If fields have existential

type then we show that all possible hidden owners are outside the object by considering the

lower bounds of the existential type.

We show in lemma 65 that the owner of a value with type T is outside the owner declared in

T. Existentially typed values (close values) are interesting; we must show that the owner of

the packed value is within the bounds declared in the close value and thus outside the declared

owner, which is defined in terms of the lower bound on the quantified context parameter. We

make use of the property that subtyping restricts ownership (lemma 63). This property relaxes

the usual property of ownership systems that owners are invariant with respect to subtyping

(which holds in Jo∃ for non-existential types). Our property follows from the definition of

subtyping, and, together with our definition of ownership for existentially typed values, is

strong enough to prove lemma 65.

Lemma 44 states that the context parameters in an inside relation are either equal or well-

formed. This property is interesting since there is no equivalent property of subtyping for

Tame FJ11. The lemma allows us to reason about the ownership hierarchy in ways which we

cannot about subtype hierarchies. For example, in lemma 62, where we show that the glb

function preserves the inside relation between contexts.

11Indeed we spent some time wrestling with variations on such a lemma for subtyping in our early work
with wildcards. Our lack of success led to the splitting of subtyping in Tame FJ into subclassing, extended
subclassing, and subtyping (section 3.1.2).



4.4. Discussion 153

4.4 Discussion

The expressivity of types in Jo∃ comes from the combination of existential quantification of

contexts and type parameterisation. The formalisation of Jo∃ follows from these starting points

and the decision to use explicit packing and unpacking, which simplifies the type rules and proofs

for Jo∃. The natural and uniform emergence of the calculus is reassuring. In this section we

discuss some of the decisions taken in the design of Jo∃ and some of Jo∃’s interesting features.

Explicit packing and unpacking Jo∃ (in contrast to Tame FJ) uses close and open ex-

pressions to explicitly pack and unpack existential types. This makes for a simpler formalism

and easier reasoning. On the other hand, it means that Jo∃ is further from a realistic, usable

programming language. However, as we discuss in section 4.5, there is a simple translation

from Jo∃ to a language with implicit operations on existential types.

Furthermore, (as opposed to models for wildcards, section 3.3.2), there is no loss of expressivity

when dealing with quantification of owner variables. This is because in Jo∃, packing and

unpacking is not required to check well-formedness; open and close expressions could not be

used in these checks because they are subtype checks and there is no place for expressions. This

is discussed in section 5.1.

Allowing abstract packages to be values (and thus stored in the heap) follows earlier work

[27, 64, 45] on existential types and is a natural consequence of explicit packing. However,

the owners-as-dominators property is usually phrased assuming that all values are objects

(addresses in Jo∃deep). We must therefore consider how to describe owners-as-dominators in

the presence of abstract packages. We do this by not distinguishing between abstract packages

and the objects that they abstract. This ensures that existential quantification cannot hide

violations of owners-as-dominators.

F-bounds There is no need to support F-bounded polymorphism [25] (section 2.2.1) in Jo∃. A

formal context parameter cannot appear as a parameter in a bound, since bounds are contexts,
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not types (as in Tame FJ, for example, X→[⊥ C<X>]). This simplifies the treatment of bounds

in well-formed environments and the inside relation. Since we do not have to consider F-bounds,

there can be no recursion in the definition of environments. As a specific example of why this

is an advantage, we can always find a lower bound of a formal owner that does not involve any

formal context parameters (as is done by the glb function in figure 4.12); this is not possible in

Java with wildcards [60].

I-Owner The rule I-Owner is the basis of the relationship between objects and their owners.

I-Owner is interesting because only variables with class type can be derived to be inside their

declared owner. To see why this must be the case, we consider the alternatives. If a variable

(γ) has a type variable (X) as its type, we would like to derive that γ is inside the declared

owner of X; however, no such owner is known. Extending I-Owner to give the upper bound

from Ψ is problematic; namely, if X was instantiated by an existential type then we could no

longer apply I-Owner and substitution is unsound.

If γ has existential type, we would also face problems. It seems possible to derive that γ is

inside the upper bound of its declared owner. For example, if x has type ∃o→[y z].C<o>, to

derive that x is inside z. We take the position that abstract packages (which have existential

type) are not contexts and therefore not part of the ownership hierarchy. Therefore, it does

not make sense to state that close... is inside any context.

This restriction on I-Owner and the similar restriction in F-Var (see section 4.2.4) are used

in the proofs of lemmas 33 to 43. They ensure that substituting v for x into a context or

type results in a syntactically well-formed context or type. Specifically, that a close value is not

substituted into a type, although it may be substituted into an expression. This is accomplished

because if x appears in a well-formed type (T), then x must have class type; the type of v must

be a subtype of the type of x, and thus also a class type (lemma 3); close values always have

existential type, and therefore, if v is a close value, then the substitution [v/x] does not affect

T.
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Syntax of existential types Our syntax of existential types forbids nested quantification of

types, such as ∃∆1.∃∆2.N. However, any such type can be rewritten using single quantification,

such as ∃∆1, ∆2.N. By restricting the syntax in this way, we avoid the need for equivalence

rules between types. Alternatively, we could use quantification by a single formal context and

allow nested existential types. This scheme follows the classical formulations of existential

types (see section 2.3) more closely. For example, ∃o1,o2,o3.C<o1,o2,o3> would be written

as ∃o1.∃o2.∃o3.C<o1,o2,o3>. Since we do not allow forward references in bounds, the two

versions are equally expressive. If we adopted the single quantification syntax then the open

and close expressions would need to be adapted to deal with a single context variable at a time,

rather than a context environment at a time. Although this would make their formalisation

marginally simpler, it would also mean that we would need a let expression, since open could

not be used to encode let.

Quantification of contexts Our syntax only allows quantification of types, not contexts;

we cannot write C<∃o.o>. This type would represent an invariant type parameterised by a

variant context. We do not support quantification of contexts in Jo∃ because we are unsure of

its precise behaviour, and because it would require significant adjustment to Jo∃.

Following the treatment of nested existential types in Jo∃ and Tame FJ, C<∃o.o> should be

invariant. How ∃o.o would then behave as a context is not clear. Furthermore, it is hard to

see if an invariant type with unknown owner is useful because variables with this type can only

contain objects with an unknown owner; whether it is sensible to construct such objects is also

unclear.

To support ∃o.o as a valid context in Jo∃ would require extensions to well-formedness of

contexts and the inside relation. Introduction and elimination of such existential quantification

would require additional work. It is not clear how this would be done, as usually packing and

unpacking only affects quantification at the outermost scope of a type (e.g., ∃o.C<C<o>> and

not C<∃o.C<o>>).

Omitting quantified contexts does not make Jo∃ incomplete because types involving quantifi-
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cation of contexts are not denotable or expressible in Jo∃; no expression can be constructed

that has a type containing ∃o.o.

Enforcing owners-as-dominators In the type system of Jo∃deep we had to extend the usual

restrictions found in ownership systems to enforce owners-as-dominators. Requiring context

parameters to be outside an object’s owner is standard, we needed to extend this to deal with

quantified context variables and type parameters. The crucial observation is that, in enforcing

owners-as-dominators, we always wish to show that a value is outside the object that refers to

it. It is therefore conservative to use a lower bound on a value’s owner rather than the value’s

owner itself. The additional premises in F-Class of Jo∃deep can thus deal with lower bounds

on parameters. In the case of quantified context parameters this means that we can use their

greatest lower bound. For type parameters we use the lower bound stored in Ψ; this motivates

using Ψ in Jo∃ rather than just a set of type variables.

Restrictions on Jo∃

We have simplified Jo∃ by omitting subclassing. We expect that adding subclassing to Jo∃
would be easy and would not make the formal system or proofs more interesting, only longer.

The syntax of class declarations would need to be extended with an ‘extends’ clause. Subtyping

and the lookup functions would need to be extended accordingly. S-Full would have to be

modified to allow the quantified types (currently, both N) to be subtypes12.

Another restriction on Jo∃ is the lightweight treatment of type parameters. Adding existential

quantification of type parameters is dealt with in Tame FJ (section 3.1). It may be useful

to have both quantification of contexts and type parameters in a real language. Each form

serves a different purpose and both have strong motivation, so there is no reason to believe a

programmer would require only one or the other. Quantification of types does not complicate

12In terms of the proofs we would require an extra few lemmas that show preservation of field type and
method type under subclassing, these are usually easy to prove. We would also need to extend the lemmas that
involve subtyping due to the extra rule, again, we expect this to be an easy modification. Corresponding to
the change to S-Full, some lemmas would need to be changed to conclude a subtyping relation between the
quantified types, rather than equality.
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the treatment of quantification of contexts, because contexts do not contain type information.

Therefore, we leave investigation of a system with both forms of quantification to further work.

Jo∃ could also be extended by allowing bounds on formal type variables. In the current system

this could be done by allowing the programmer to specify the bounds in Ψ. We do not expect

this extension to cause any significant changes since most of the machinery to deal with bounds

in Ψ is already in place.

If we had also added subclassing, then we could add proper type bounds, in the same way

as in Tame FJ. This would require some changes to the formalism and proofs. In particular,

we expect to require the separation of subtyping into subclassing, extended subclassing, and

subtyping, as in Tame FJ (see section 3.1.2). Again, we hope the orthogonality of ownership

and subclassing would mean that all significant issues have been covered in the context of

Tame FJ.

Using type bounds subsumes bounds on the owner since types include ownership information.

For example, if X has the upper bound C<o1> then we can instantiate X to any subclass of C.

Due to the invariance of context parameters13, this class has to be owned by o1. By using an

existential type as an upper bound14, we can specify a range of possible context parameters.

For example, if the upper bound of X is ∃o→[o2 ©].C<o> then any instantiation of X must

have an owner bounded by o2 and ©.

4.4.1 An Application — Effects

To show how Jo∃ can be used to improve reasoning about programs we show how it could be

combined with effects [48, 32]. Adding an effects system to Jo∃ is future work, but we imagine

how existential types in Jo∃ could be used with effects. We give an example of a Jo∃ program

with effects in figure 4.14.

13Assuming that the owner of a superclass must be the owner of the subclass, as in [32].
14This is similar to Clarke’s use of a fresh context variable as the owner of the upper bound [30]. It is also

hinted at in OGJ, where implicitly bound context parameters of bounding types are described as being similar
to wildcard types [78].
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C<owner> {
...
void m() { //effect: owner

...
}

}

D<owner, o2> {
∃o→[⊥ this].C<o> a;
∃o→[owner ©].C<o> b;
∃o→[⊥ o2].C<o> c;

void m2() {
a.m(); //effect: [⊥ this]
b.m(); //effect: [owner ©]
c.m(); //effect: [⊥ o2]

}
}

Figure 4.14: An example of a Jo∃ program with effects.

Expressions and methods have a single15 effect which denotes the area of the heap that may

be read or written during execution of the code. An effect a means that only objects owned by

a may have been read or written. An effect [a b] means that objects owned by contexts that

are inside b and outside a may have been read or written.

In the example (fig 4.14), the method m has the effect owner which means that only objects

owned by the owner of the receiver may be accessed in calls to m. Since all the fields of D have

existential type, this means that the calls to m in m2 have range effects. This is still useful

information, however: since this and owner must be distinct, the range effects of a.m() and

b.m() must be disjoint and so these two calls could be reordered or parallelised. Since we have

no information about o2 we do not know if the effect of c.m() is disjoint from the other effects

and so we cannot reorder this expression.

4.5 Wildcards-Style Existential Types

An alternative way to design a system with owner variance would be to perform packing and

unpacking implicitly in the subtype and type rules, rather than explicitly using open and

close expressions. Such an approach is taken in the Tame FJ formalisation of Java wildcards

15Most real effects systems separate read and write effects



4.5. Wildcards-Style Existential Types 159

(section 3.1). In the context of variant ownership, we believe this approach is almost equivalent

to using explicit packing and unpacking (in contrast to wildcards where explicit packing and

unpacking is less expressive than the implicit approach, see section 3.3.2). In this section we will

outline Jo∃wild, which uses implicit packing and unpacking to implement ownership variance.

Jo∃wild is closer to a usable language, at the expense of being more complicated and less

transparent than Jo∃. The type rules of Jo∃wild are larger and more complex than Jo∃ (although

there are less of them). The presence of context parameter inference further obfuscates the type

system. The connection from Jo∃wild to classical existential types systems [26, 27, 64, 74, 75]

is weaker than from Jo∃. For these reasons we have so far formalised ownership variance using

explicit packing and unpacking. In particular, proof of soundness and owners-as-dominators is

simpler in Jo∃ than Jo∃wild, thanks to the absence of context parameter inference and simpler

type rules.

We imagine Jo∃wild is an intermediate language between Jo∃, a convenient formalisation, and

a real programming language. We outline a straightforward translation from Jo∃wild to Jo∃
and argue that we have investigated all the novel features of Jo∃wild (relative to Jo∃) in the

context of Tame FJ. Therefore, we do not give a full formalisation or proofs of soundness and

owners-as-dominators for Jo∃wild.

4.5.1 Jo∃wild

We give the syntax of Jo∃wild in figure 4.15, the elided syntax of environments and identifiers

remains unchanged from Jo∃. The differences are the removal of open and close expressions,

the addition of ? to denote context parameters to be inferred during method invocation, and

the addition of syntactic category p (and its runtime counterpart, q). Also, in order to simplify

the syntax of types, we require that all types are quantified (possibly by the empty set).

From Jo∃, we remove the type and reduction rules that handle open and close expressions.

The well-formedness rules for contexts, types, and environments, the inside relation, and the

operational semantics remain mostly unchanged.
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e ::= null | x | γ.f | γ.f = e | γ.<p, T>m(e) | expressions
new C<a, T> | ι | err

Q ::= class C<∆, X> {T f; W} class declarations
W ::= <∆, X> T m(T x) {return e;} method declarations

v ::= ι | null | err values

N ::= C<a, T> class types

R ::= C<r, T> runtime types
M ::= N | X non-existential types
T ::= ∃∆.N | ∃∅.X types

a ::= o | x | © | ι actual owners

r ::= © | ι runtime owners

b ::= a | ⊥ bounds
p ::= a | ? owner parameters for methods
q ::= r | ? runtime owner parameters for methods

Figure 4.15: Syntax of Jo∃wild.

The type rules are changed to unpack sub-expressions before they are used in other premises

and to pack the result of type checking to prevent free-variable escape. These changes follow

Tame FJ (see section 3.1) closely (including adding guarding environments and modifying the

subsumption rule); there are no interesting differences in dealing with contexts rather than

types.

Actual context parameters to a method invocation that are marked with ?, must be inferred.

This is simpler than in Tame FJ, due to the separation of parameters (contexts) from types (for

example, we don’t need a sift function). We give rules for method invocation and the necessary

auxiliary functions in figure 4.16. Compared to Jo∃, we must do more work in T-Invk and

less in mType, this is because we use the types of the formal parameters to infer actual context

parameters. Inference of context parameters is done by the match function. Compared with

Tame FJ, matching is simpler in Jo∃wild since we do not have subclassing. Otherwise, matching

and method invocation follows Tame FJ fairly closely.

The subtyping rule S-Full in Jo∃ is replaced with the following rule, adapted from Tame FJ:



4.5. Wildcards-Style Existential Types 161

class C<o→[bl bu], X> {U′′ f; W} <o′ →[b′l b′u], X′> T m(T x) {return e;} ∈ W

mType(m, γ, C<a, U>) = [a/o, U/X, γ/this](<o′ →[b′l b′u]>T→ T)

∀j where pj = ? : oj ∈ fv(M′) ∀i where pi 6= ? : ai = pi

M = [a/o′,a′/o]M′

dom(∆) = o fv(a, a′) ∩ o, o′ = ∅
match(M,∃∆.M′, p, o′, a)

Ψ; ∆; Γ ` γ : ∃∆′.N Ψ; ∆; Γ ` e : ∃∆.M

∆; Γ ` p ok Ψ; ∆; Γ ` U ok

mType(m, N) = <o→[bl bu], X>T→T

match(M, T, p, o, a) ∆, ∆′, ∆; Γ ` M <: [a/o, U/X]T

∆, ∆′, ∆; Γ ` a ¹ [a/o]bu ∆, ∆′, ∆; Γ ` [a/o]bl ¹ a

Ψ; ∆; Γ ` γ.<p, U>m(e) : [a/o, U/X]T|∆′, ∆

(T-Invk)

Figure 4.16: Jo∃wild rules for method invocation.

dom(∆′) ∩ fv(∃o→[bl bu].N) = ∅ fv(a) ⊆ dom(∆, ∆′)

∆, ∆′ ` [a/o]bl ¹ a ∆, ∆′ ` a ¹ [a/o]bu

∆; Γ ` ∃∆′.[a/o]N <: ∃o→[bl bu].N

(S-Env)

This is nearly identical to the Tame FJ version given in figure 3.2; the difference is that here we

deal with contexts rather than types, both in the substitutions and quantification. We compare

contexts using the inside relation rather than subtyping. S-Env subsumes S-Full by allowing

subtyping between existential types (by using a = o = dom(∆′)). In addition, by using ∆′ = ∅,
it allows for the packing of a type by finding a supertype. For example, we can pack C<o1> to

its supertype, ∃o.C<o>. This can encode any close expression that can be written in Jo∃.

In terms of well-formed contexts and the inside relationship, the only change from Jo∃ would be

to lift the restriction in F-Var and I-Owner that variables must have non-existential type. We

expect that we could allow a variable to be a well-formed context if it is defined in Γ, whatever
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its type. If an object’s declared owner is existentially quantified, then we could take upper

bounds until we find an un-quantified owner (similarly to the glb function (figure 4.12), but

taking upper, rather than lower, bounds). For example, if x is mapped to ∃o→[⊥ this].C<o>,

we could derive that x is inside this.

Although heaps have the same syntax in Jo∃wild and Jo∃, the different syntax of values affects

the structure of heaps. In Jo∃, close expressions can appear in the heap, referenced by fields

with existential type. Fields in Jo∃wild point only to addresses. It is simple to translate

heaps between the two systems. A Jo∃wild heap can be derived from a Jo∃ heap by replacing

all occurrence of close ι ... with ι. In the other direction, a Jo∃ heap can be found by

wrapping addresses with close expressions wherever a field has existential type. This is slightly

more complex since the type of the address must be found and the contexts to be hidden in

the close expression must be identified.

Since Jo∃wild heaps do not involve close values, the definition of add becomes trivial and ownH

much simpler. Proof of owners-as-dominators and other encapsulation properties should follow

easily from the proofs for Jo∃.

4.5.2 Programs in Jo∃wild and Jo∃

There is a simple translation from Jo∃wild programs to Jo∃ programs: implicit unpacking us-

ing capture conversion is translated to explicit unpacking using an open expression, implicit

packing due to S-Env is translated to explicit packing using a close expression. Unlike the

wildcards case, implicit packing cannot take place in well-formedness checks, and so all occur-

rences of implicit packing can be translated (see sections 3.3.2 and 5.1). The translation is

type preserving: the type of a translated expression is the same as the original expression. It

is also structure preserving: no extra methods or method calls are created. The only effect

of translation is inserting open and close expressions. The inverse translation (removing open

and close expressions) works in most cases. However, there are some instances where a more

complex translation is needed.
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We will now discuss some examples to show how programs can be translated between Jo∃ and

Jo∃wild. We will assume the class declaration of C,

class C<oc> {

C<oc> f;

<om> void m(C<om> x1, C<om> x2) {...}

}

The Jo∃wild program is on the left and the equivalent Jo∃ program is on the right:

∃o.C<o> eg1(∃o.C<o> x) {

return x.f;

}

∃o.C<o> eg1(∃o.C<o> x) {

open x as y,o1 in

return close y.f with o hiding o1;

}

Similarly to the correspondence between wildcards and existential types (section 2.4.1), the Jo∃
program must wrap the field access x.f in open and close expressions. Since x has existential

type, in Jo∃ we must unpack it before its field can be accessed. This is done implicitly in

Jo∃wild. The result of the field access contains a free context variable (labelled o1 in the Jo∃
program). Thus, the result of field access must be re-packed, either explicitly in Jo∃ using close

or implicitly in Jo∃wild. Field assignment and most method calls are translated similarly.

Explicit open expressions (in Jo∃) allow for the scope of an unpacked variable to be explicitly

defined; implicit unpacking (in Jo∃wild) limits this scope to a single sub-expression. Therefore,

Jo∃ can express some programs more easily than Jo∃wild. For example, the following program

cannot be translated to Jo∃wild by erasing the open expression, because each occurrence of x

in the parameter list of the method invocation would be treated as unique.

void eg2(∃o.C<o> x) {

open x as y,o1 in

y.<o1>m(y, y);

}

Such programs can be translated to Jo∃wild, but a more complex translation is required. Explicit

unpacking is encoded as a method call to eg2Aux. This method body gives the same scope as

the body of the open expression in the Jo∃ program.
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<o1>void eg2Aux(C<o1> y) {

y.<o1>m(y, y);

}

void eg2(∃o.C<o> x) {

this.<*>eg2Aux(x);

}

4.6 Chapter Summary

In this chapter we have presented, motivated, and discussed Jo∃, a novel approach for incorpo-

rating subtype variance into a programming language with ownership types. Explicit existential

quantification is used to denote variance; type parameterisation is combined with existential

quantification of contexts to make a very flexible and expressive system. Explicit packing and

unpacking of existential types are used to simplify the formal system and proofs.

We have proved Jo∃ type sound. We have also presented Jo∃deep an extension to Jo∃ that

satisfies the owners-as-dominators property. The key to stating owners-as-dominators in a

language with packed values is to ignore wrapping close expressions so that we include all

references, even if they are to packed objects. To satisfy owners-as-dominators, we require that

the lower bound on variant contexts are outside the object in which they are used, this ensures

that the owner of a hidden object is outside the object that references the hidden object. We

have presented Jo∃wild a variation of Jo∃ using implicit packing and unpacking that is closer

to a usable (as opposed to formal) language.



Chapter 5

Comparisons and Discussion

In this chapter we compare the systems developed in this thesis with each other and with related

work. We compare Tame FJ with Jo∃ in section 5.1. We compare Tame FJ with other models

of wildcards in section 5.2, and Jo∃ with ownership systems that support existential types or

variance in section 5.3. We compare the two systems in terms of: the use of quantification and

the entities that are quantified, the techniques used to formalise the systems, the complexity

of the formalisms, and the size and complexity of their proofs.

We show that the use of existential types for subtype variance involves similar concepts, even

though the quantified variables are of different kinds. There are, however, some important

differences; chiefly that in Tame FJ, but not Jo∃, the parameters of types can be used as types

themselves.

We show that Tame FJ is closely related to other formalisations of wildcard types and existential

types.

We show that Jo∃ can be used to compare and encode ownership systems that support subtype

variance or existential types. Existing mechanisms for supporting subtype variance have the

same behaviour as existentially quantified contexts in Jo∃ and can be easily encoded. In the case

of universes [66, 67, 39], using context parameters and existential types rather than universe

annotations, give us a clearer picture of the underlying mechanisms used in type checking. Jo∃

165
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can also be used to model existing kinds of existential types in ownership systems. In particular,

explicit quantification and unpacking explain clearly the behaviour of “existential owners” in

existential downcasting [98].

5.1 Comparison of Tame FJ and Jo∃

The use of existential types in Tame FJ and Jo∃ is almost identical. The key difference is

that Tame FJ supports quantification of type variables whereas Jo∃ supports quantification

of context variables1. This is significant because contexts are a separate set of variables from

types. Therefore, there is a strict separation between the quantifying entities and types in Jo∃,
whereas in Tame FJ the quantifying variables may appear as types.

Another difference is that packing and unpacking of existential types is implicit in Tame FJ and

explicit in Jo∃. This is a difference in the formalisations rather than a fundamental difference

between the two systems. Explicit packing and unpacking allows for a simpler formalism and

simpler proofs. However, they cannot be used in Tame FJ, because packing is required in well-

formedness checks which cannot accommodate an explicit close expression, see section 3.3.2.

The separation of contexts and types in Jo∃ means that well-formedness checks do not require

packing (the inside relation is used, rather than subtyping), and so Jo∃ can be formalised using

explicit open and close expressions. Jo∃ could also be modelled using implicit packing and

unpacking, as discussed in section 4.5.

Explicit packing and unpacking simplify both the formalism and the proofs of soundness and

the owners-as-dominators property. Simplifications in the formalism include not having to infer

type or context parameters using match, not requiring guarding environments to keep track of

unpacked variables, and simplified subtyping (S-Full is a simpler rule than XS-Env).

In Jo∃wild, which supports implicit packing and unpacking, the separation of contexts and

types makes parameter inference at method calls simpler. In Tame FJ, parameter inference

was a difficult part of the system to formalise. Care had to be taken not to cause problems

1Although Jo∃ supports type variables, these cannot be existentially quantified
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with subject reduction by inferring types rather than type parameters. For example, inferring

the value of X in calls to a method with signature <X>void m(X x) (X appears as a type), as

opposed to calls to <X>void m(C<X> x) (X appears as a type parameter);.

In Jo∃wild, inference of contexts is simpler; although the match rule is similar in both systems,

there is no need for sift because types cannot be inferred, only contexts.

The quantifying variables of Tame FJ are types and therefore wholly static entities. Contexts in

Jo∃ are treated statically, but represent dynamic entities. Since parameterisation is a per-type,

rather then per-class, operation, and since contexts are treated statically, there is surprisingly

little difference caused by parameterising by static or dynamic entities.

Both types and contexts are related by hierarchical relations: subtyping and the inside relation,

respectively. As discussed in section 2.1.1, subtyping involves inclusion polymorphism, C rep-

resents objects with type C or a subtype of C. With contexts, there is no equivalent inclusion,

a context, c, means exactly c. However, since contexts only appear as type parameters2, this

is actually the same situation as with types.

Neither language supports existential quantification of variables: Tame FJ does not support

∃X.X and Jo∃ does not support ∃o.o. It would be possible to add such quantification to

Tame FJ by relaxing the syntax of existential types. However, we encountered problems with

these types in earlier versions of Tame FJ and it is possible (though unlikely) that there could

be problems in the version of Tame FJ presented in this thesis. In Jo∃, it is not so easy to add

quantification of context variables, because contexts cannot be used as types, Jo∃ would have

to be extended in several ways to support quantified contexts, as discussed in section 4.4.

There are many superficial differences between the two languages: Jo∃ has two kinds of pa-

rameters (types and contexts) and Tame FJ has only type parameterisation; Jo∃ can be used

to enforce owners-as-dominators, there is no equivalent property in Tame FJ3; Tame FJ is

functional and Jo∃ imperative; Jo∃ is more heavily simplified than Tame FJ; the lack of sub-

2Although some contexts can be used as variables in expressions, where there is no inclusion polymorphism,
this is a very different situation to being used as a type.

3It is possible to use type parameterisation to enforce ownership properties [78]. It would be interesting
future work to investigate the use of explicit existential types in such a system.



5.1. Comparison of Tame FJ and Jo∃ 168

classing in Jo∃ means that the separation of subtyping into subclassing, extended subclassing,

and subtyping in Tame FJ is not required and method and field lookup and checking is sim-

plified. None of these differences concern existential quantification, nor are they fundamental

differences between the systems.

5.1.1 Comparison of Proofs

The proof of soundness for Jo∃ is longer (because the system is imperative and includes more

environments, expressions and rules), but more straightforward (because of the simplifications

discussed above), than that for Tame FJ. Both sets of proofs (given in appendices A and B)

include the usual lemmas for weakening and substitution. In Tame FJ, we only have to deal

with substitution of types for type variables and expressions for variables, whilst in Jo∃ we

must deal with substitution of types for type variables, contexts for context variables, and

values for variables, and cannot substitute expressions for variables, since variables may appear

(as contexts) in types and we wish to avoid dependent typing. Since subclassing is omitted

from Jo∃, many lemmas dealing with the class hierarchy or method overriding are omitted or

simplified. Tame FJ also requires lemmas relating the different kinds of subtyping, which are

unnecessary in Jo∃. On the other hand, Jo∃ has several lemmas dealing with the inside relation

(for example, weakening, substitution, and well-formedness).

The most interesting differences are due to packing and unpacking. Since these operations are

performed by expressions in Jo∃, reasoning about packing and unpacking is done in the proofs

of lemmas about expression typing. In Tame FJ similar reasoning is done, but it is done in

separate lemmas, such as those concerning the match relation and the relationship between

subclassing and extended subclassing. Since the subsumption rule in Tame FJ also deals with

packing, the inversion lemmas in Tame FJ are more complex than those of Jo∃.

Tame FJ supports F-bounds on type variables; Jo∃ has no equivalent of F-bounds for context

variables (see section 4.4). This makes the treatment of environments in Jo∃ simpler than in

Tame FJ. There is no need to use subclassing and the uBound function in F-Env. It also

means an environment can be separated without fear of variables going out of scope. That is,
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in Jo∃ if ∆ ` ∆1, ∆2 ok then ∆ ` ∆1 ok and ∆, ∆1 ` ∆2 ok. This is not true in Tame FJ

where ∆1 may contain references to variables defined in ∆2.

5.2 Related Work — Wildcards

In this section we compare Tame FJ with related work.

5.2.1 Wild FJ

Wild FJ [60] (section 2.4.6) is a full model for Java wildcards, but lacks a soundness proof.

Tame FJ is a refinement of Wild FJ, as the name suggests. The two systems are very similar:

they are both extensions of FGJ [53], they share the same philosophy of modelling wildcards

with implicitly handled existential types, and they have a similar form of subtyping. In par-

ticular, XS-Env (see figure 3.2) is taken from Wild FJ with only minor adjustments. This is

a significant design decision, in contrast to using close expressions and S-Full (section 2.3.2)

as in ∃J [24] (section 3.3.2) or two subtype rules as in Pizza [70] (section 2.2.2) and Java GI

[94]. Wild FJ and Tame FJ are similar in assigning only existential types to expressions (Wild

FJ never gives expressions wildcard types, available to the programmer in the surface syntax)

and using existential types for subtyping. Existential types in both systems are quantified by

an environment rather than single variables, and only non-existential types may be quantified

(i.e., existential types cannot be further quantified).

The main differences between Tame FJ and Wild FJ are the way existential types occur, packing

and unpacking, and type parameter inference.

Wildcards are assumed to have been translated to existential types in Tame FJ, whereas in

Wild FJ they are translated within the calculus. This makes Tame FJ significantly simpler.

Existential packing in both systems takes place in Env subtyping rules. In Wild FJ existential

types are also packed manually in the conclusions of type rules. By “manual packing” we mean
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that an environment and a type are explicitly combined in a type rule to give an existential

type; for example, ∆ and N can be manually packed to ∃∆.N. Manual packing does not occur in

Tame FJ; packing only occurs in XS-Env. Manual packing is simpler than the corresponding

rules in Tame FJ system; however, we avoid it because it can produce types of the form ∃X.X4

and requires extra steps to ensure that existential types are in the normal form described in

section 3.3.

Unpacking in Wild FJ and Tame FJ is performed manually. By “manual unpacking” we mean

that an existential type is explicitly split into an environment and an un-quantified type. For

example, ∃∆.N can be manually unpacked to ∆ and N. Tracking the unpacked environment

(∆) is done implicitly in Wild FJ, ∆ is simply packed in the rule’s conclusion. In Tame FJ, ∆

is tracked in the guarding environment and is re-packed (or safely forgotten by subsumption to

an upper bound) by T-Subs and XS-Env.

Type parameter inference is performed by the capture relation in Wild FJ and the match re-

lation in Tame FJ. These two relations fulfil the same purpose and produce the same results,

but operate differently. Both relations infer missing type parameters to a method call. Both

relations use the actual and formal type parameters and the types of actual and formal pa-

rameters of a method and both relations take subclassing into account. For example, given

the method signature <X,Y> void m(C<X> x, C<Y> y) and the method call <?, ?>m(a, b),

where a has type C<Shape> and b has type ∃Z.C<Z> both schemes infer Shape and Z as actual

type parameters. In Tame FJ the match relation

match(〈{C<Shape>,C<Z>}, {C<X>,C<Y>}〉, {?,?}, {X,Y}, {Shape,Z})

is checked. The interesting premises in the derivation are fulfilled by

` C<Shape> @@: [Shape/X,Z/Y]C<X>and ` C<Z> @@: [Shape/X,Z/Y]C<Y>

4We avoid these types because where the lower bound on X is ⊥, they have equivalent behaviour to their
upper bound because of implicit subsumption; where the lower bound is not ⊥, they can neither be expressed
nor denoted in Java.
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, the substitution in these premises gives the inferred parameters Shape and Z. In Wild FJ, the

capture function is called twice:

capture∆(?, X, {C<X>,C<Y>}, {C<Shape>,C<Z>})andcapture∆(?, Y, {C<X>,C<Y>}, {C<Shape>,C<Z>})

. Looking in detail at the first instance, the capture function identifies one of C<X> and C<Y>

that contains X and the position in which it occurs — the first parameter of C<X> (the first

formal parameter type). It then picks the corresponding parameter from the corresponding

actual parameter type — Shape.

More formally, and adjusting the notation of Wild FJ to match Tame FJ, we conjecture5 that:

∀∆ : match(〈R, P〉, U, X, T) ⇔ capture∆(P, X, U, R) = T

Despite some effort, Wild FJ has not seen a soundness proof, however, we have not found

any essentially unsound features. We found several reasons why Wild FJ was not amenable

to a soundness proof, and these correspond with the major differences between Wild FJ and

Tame FJ. It is difficult to ensure that capture produces types that are consistent under reduction

and that the uses of capture in the type and reduction rules give corresponding results. We

thus replaced capture with match. Having to deal with wildcard types and existential types

in the formalism is difficult; furthermore, the use of snap, WS-Env, and manual packing

makes reasoning about packing in the type rules complex. Uniformly using existential types

and restricting packing to XS-Env addresses these problems in Tame FJ. In both Tame FJ

and Wild FJ, there is no obvious relationship between subtyping and field and method types.

This is in comparison with FGJ [53] where field and method types are invariant with respect

to subtyping. In Tame FJ we use the subclassing relation when dealing with field and method

type lookup; field and method types are invariant with respect to subclassing. Finally, Wild FJ

is quite large and complicated: the auxiliary functions for translating wildcard to existential

types and bound lookup require 16 derivation rules6; performing type translation within the

5It is not very interesting to prove this (which would be non-trivial) because there is no formal link between
Wild FJ and Java.

6Tame FJ does not translate wildcard types to existential types and has only one rule (with two cases) for
bounds lookup.
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system, and supporting optional bounds on wildcards all make the system large and complex.

This introduces more scope for complexity and thus errors in the proofs.

5.2.2 Variant Parametric Types

Variant parametric types [54] (section 2.2.2) can be thought of as a partial model for Java

wildcards. The differences between variant parametric types and wildcards are described in

section 2.4.5. The formalisation of variant parametric types is similar to Tame FJ in that

it performs packing and unpacking implicitly. However, existential types are implicit in the

variant parametric types system and the mechanisms for packing and unpacking are different

to those in Tame FJ. There are many differences between the two calculi which reflect the

differences between variant parametric types and wildcards; we do not describe these here,

they are mostly straightforward and are discussed informally in section 2.4.5.

The close operation in variant parametric types, T ⇓∆ T′ (see section 2.3.7), eliminates free

type variables from T either by packing T or finding a supertype of T with no free variables. In

Tame FJ, the same operation is done by T-Subs and XS-Env (figures 3.5 and 3.2). Guarding

environments are used to facilitate this; the ∆ that parameterises the close operation on the

result type of a rule in variant parametric types corresponds with the guarding environment

on that rule in Tame FJ. The close operation in variant parametric types and subsumption in

Tame FJ cannot create types of the form ∃∆.X, in contrast with manual packing in Wild FJ.

The open operation of variant parametric types corresponds with manual unpacking in Tame FJ.

The only differences are due to the differences between variant parametric types and wildcards.

5.2.3 Pizza and EX upto

An interesting comparison can be made between the XS-Env rule of Tame FJ (figure 3.2) and

the Pizza-S-∃-≥ and Pizza-S-∃-≤ rules of Pizza [70] (section 2.3.7), these are adapted in

Java GI [94], and EX impl and EX upto [95]. We give and adapt these rules and F-S-Kernel

(section 2.3.2) for easy comparison in figure 5.1.
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∆, ∆′ ` T <: T′ dom(∆′) ∩ fv(T′) = ∅
∆ ` ∃∆′.T <: T′

(S-Open)

∆ ` [T/X]Bl <: T ∆ ` T <: [T/X]Bu

∆ ` [T/X]U <: ∃X→[Bl Bu].U

(S-Close)

dom(∆′) ∩ fv(∃X→[Bl Bu].U) = ∅
∆, ∆′ ` [T/X]Bl <: T ∆, ∆′ ` T <: [T/X]Bu

∆ ` ∃∆′.[T/X]U <: ∃X→[Bl Bu].U

(S-Env)

∆, ∆′ ` T <: T′

∆ ` ∃∆′.T <: ∃∆′.T′

(S-Kernel)

Figure 5.1: Pizza and Tame FJ type rules for existential types.

S-Open unpacks existential types and allows subtyping between existential types with the same

quantifying environment. S-Close packs existential types. S-Env performs both packing and

unpacking. S-Kernel gives subtyping between existential types with the same environment.

We show that the two pairs of rules are equivalent when dealing with existential types, i.e.,

deriving ∆ ` ∃∆1.T1 <: ∃∆2.T2.

We can encode S-Open in terms of S-Env and S-Kernel; however, the right-hand side of

the conclusion must be quantified by the empty environment:

∆, ∆′ ` T <: T′

∆ ` ∃∆′.T <: ∃∆′.T′

(S-Kernel)

dom(∆′) ∩ fv(∃∅.T′) = ∅
∆ ` ∃∆′.[∅]T′ <: ∃∅.T′

(S-Env)

∆ ` ∃∆′.T <: ∃∅.T′
(S-Trans)

Likewise, we can encode S-Close using S-Env; in this derivation the first premise is trivially

true, the second and third are the premises of S-Close:

dom(∅) ∩ fv(∃X→[Bl Bu].U) = ∅
∆, ∅ ` [T/X]Bl <: T ∆, ∅ ` T <: [T/X]Bu

∆ ` ∃∅.[T/X]U <: ∃X→[Bl Bu].U

(S-Env)

On the other hand, S-Env and S-Full can be encoded using S-Open and S-Close:
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∆, ∆′ ` [T/X]Bl <: T ∆, ∆′ ` T <: [T/X]Bu

∆, ∆′ ` [T/X]U <: ∃X→[Bl Bu].U

(S-Close) dom(∆′) ∩ fv(∃X→[Bl Bu].U) = ∅
∆ ` ∃∆′.[T/X]U <: ∃X→[Bl Bu].U

(S-Open)

∆, ∆′ ` Bl <: T ∆, ∆′ ` T <: Bu

∆, ∆′ ` T <: ∃∆′.T′

(S-Close) dom(∆′) ∩ fv(∃∆′.T′) = ∅
∆ ` ∃∆′.T <: ∃∆′.T′

(S-Open)

The substituion in S-Close in the second derivation is [X/X]; this can be made formal by

using different alphabets for bound and free variables. The second premise of S-Open in the

last derivation is tautological if ∆′ is well-formed.

Although we use S-Kernel to discuss the relationship between the two approaches to sub-

typing, S-Kernel is not present in Tame FJ or Wild FJ; instead, it is refactored into the

other subtype rules. In Tame FJ this only affects XS-Sub-Class, where the conclusion is

∆ ` ∃∆.C<T> <: ∃∆.[T/X]N, rather than ∆ ` C<T> <: [T/X]N which would be used if S-

Kernel were present. If we included ∃∆.X, we would have to expand S-Bound in a similar

way, as is done in Wild FJ.

If we consider T different from ∃∅.T, then S-Open and S-Close would be slightly more flexible

than S-Env and S-Kernel. We can close this small gap in expressivity by using the axioms

∆ ` T <: ∃∅.T and ∆ ` ∃∅.T <: T, or, as in Tame FJ, by defining ∃∅.T as equivalent to T.

We use S-Env in Tame FJ because the formulation of S-Open seems incompatible with our

soundness proof, in particular, it does not seem compatible with lemma 17 (see section 3.1.2).

In Tame FJ (which uses S-Env), this lemma is used to convert a subtyping relationship to an

extended subclassing relationship. It requires that ∆, the environment that judges the subtype

relationship, is well-formed. If we try to prove this lemma for Tame FJ with S-Open rather

than with S-Env, then there would be a problem in the S-Open case. Namely, to apply the
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inductive hypothesis to the premise of S-Open, we need to know that (∆, ∆′) is well-formed.

This is only the case if ∆′ is well-formed, but this cannot be required in the premises of the

lemma because it could not then be applied in the transitivity case.

5.3 Related Work — Ownership

In this section we compare Jo∃ with ownership types systems that support variance or existential

types.

5.3.1 Variance

Variant ownership types Variant ownership types [57] support use-site variance annota-

tions [54] to give variant subtyping (section 2.5.3). The correspondence between variance an-

notations and existential types is described in section 2.3.7; this correspondence also applies to

variant ownership types. Variant ownership types could, therefore, be encoded in a restriction

of Jo∃.

There are some differences between type checking in variant ownership types and type checking

in Jo∃. In variant ownership types, subtyping is defined using a variance relation that defines

when contexts may be treated variantly. In the type rules a limited form of unpacking converts

variant contexts into “abstract contexts” (denoted +?a, where a is some context). A type

parameterised by an abstract context only has subtypes by subclassing, not by variance.

An abstract context corresponds to an unpacked context with minimal scope, similar to a

captured wildcard in Java. In Jo∃wild, a field with a type that involves an unpacked context

cannot be assigned to, and a method with an unpacked context in any of its parameter types

cannot be called because the unpacked context parameter cannot be named in any other type.

Jo∃ is more flexible because the scope of unpacking using open expressions can be larger,

therefore unpacked context parameters can be named in more than one expressions (although

they must be unpacked from a single source). This flexibility can be regained in Jo∃wild by using
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owner-polymorphic methods and capture conversion. There is no support for these features in

variant ownership types.

Types in Jo∃ are more expressive than variant ownership types: Jo∃ supports lower and upper

bounds on contexts (as opposed to upper or lower bounds), type parameters, and explicit

quantification (to express types such as ∃o.C<o, o>); see section 4.1 for more details.

MOJO MOJO [23] (section 2.5.3) uses ? to denote an unknown context parameter. This

corresponds to an existentially quantified context bounded by ⊥ and © in Jo∃. In MOJO, ?

may be used as an actual context parameter, there is no unpacking.

In the case of field access, substitution of ? (not found in other systems such as Wild FJ

[60]) produces a similar behaviour to existential types in Jo∃. If an unpacked context variable

appears in the type of a field in Jo∃ it must be re-packed. The effect is the same as substituting

?. For example (omitting bounds), given a class declaration class C<oo> { D<oo> f; } and

an expression, e, with type C<?> (∃o.C<o> in Jo∃), e.f has type D<?> (∃o.D<o> in Jo∃). The

derivation in MOJO is:

... ` e : C<?> fType(f, C<?>) = D<?>

... ` e.f : D<?>
(MOJO-T-Field)

In Jo∃ we must perform explicit packing and unpacking and so the MOJO expressions e.f

corresponds to the expression open e as x,o in close x.f with o hiding o in Jo∃. The

typing derivation for this expression is:

Ψ; ∆, o; Γ, x:C<o> ` x : C<o> fType(f, C<o>) = C<o>

Ψ; ∆, o; Γ, x:C<o> ` x.f : C<o>
(T-Field)

Ψ; ∆, o; Γ, x:C<o> ` close x.f with o hiding o : ∃o.C<o>
(T-Close)

Ψ; ∆; Γ ` open e as x,o in close x.f with o hiding o : ∃o.C<o>
(T-Open)
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In MOJO, strict method and field lookup are used to prevent field assignment and method call

where ? would appear as a type parameter by substitution (but not where ? is written in the

type). Likewise in Jo∃, it is impossible to type check a field assignment or method call where

the receiver has existential type7. For example, consider x.f = e where the type of f in x is T,

e must have type T. If T involves an unpacked context variable (which will be the case if x has

existential type), then e cannot have type T since the unpacked context is fresh8.

In a strict lookup, strict substitution is used to substitute actual for formal context parameters.

[Q/p]strictT is defined as [Q/p]T if ? ∈ Qi ⇒ pi 6∈ T and undefined otherwise, where Q is a set

of multiple actual context parameters and p is a formal context parameter. The strict versions

of method and field lookup are used for field assignment and method call, but not field access.

Variant types in MOJO are, therefore, treated in the same way as unbounded existential types

in Jo∃.

Universes Universes [66, 67] (section 2.5.3) permit limited subtype variance with the any

annotations. Universe types can be given corresponding types in Jo∃: any C corresponds to

∃o→[⊥ ©].C<o>, peer C corresponds to C<o> (where o is the owner of the class declaration

in which the type appears), and rep C corresponds to C<this>. The viewpoint adaptation9

rules of universes correspond with the treatment of packing and unpacking in Jo∃. Generic uni-

verses [39] can be described using this correspondence and Jo∃’s type parameterisation. Using

parametric ownership annotations and existential types to encode universe types gives a more

transparent relationship between the types and their behaviour; for example, without requir-

ing ad-hoc conversion tables for viewpoint adaptation. This could be beneficial in designing

systems derived from or related to universes, or to reason about universe type systems.

The generic universes list is repeated from section 2.5.5 in figure 5.2. The assignments in m all

require viewpoint adaptation: in assignment 1, the peer of a rep object is also a rep object.

7To simplify the discussion we consider Jo∃wild. Jo∃ is more flexible and allows the scope of unpacking to
include multiple subexpressions. See section 4.5.2 for examples of the difference between the two languages.

8Even if e′ is null this is true; the type of null must be well-formed (by T-Null, figure 4.5), since only
closed types are well-formed, a fresh context variable cannot occur in the type of null.

9Viewpoint adaptation is the change in universe annotation when considering a type in a different context
from the one in which it was declared.
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The type parameter must also be adapted — the peer of a peer is a peer. In assignment 2, x.f

is in the representation of a peer of this, this cannot be denoted in universes and so is adapted

to any. If the type of the receiver is an any object, as in assignment 3, then the result type

is also annotated with any. Finally in assignment 4, xF.datum has type peer Shape because

type variables are not adapted by viewpoint. This type is a subtype of any Shape because of

variant subtyping of any types.

class GUList<X> {
peer GUList<X> next;
X datum;

}

class C {
rep GUList<peer Shape> f;
void m(peer C x) {

rep GUList<peer Shape> iNext = f.next; //1
any GUList<peer Shape> xF = x.f; //2
any GUList<peer Shape> xNext = xF.next; //3
any Shape xDatum = xF.datum; //4

}
}

Figure 5.2: Usage and definition of a list in the universes system.

Although these viewpoint adaptations are intuitively sensible, they are specified as a lookup

table with no formal justification and so are somewhat arbitrary [39]. In the Jo∃ version (given

in figure 5.3), universe annotations are replaced by context parameters; viewpoint adaptation

is accomplished by substitution of context parameters. Packing is used to introduce existential

types (which represent the any annotation).

The context owner denotes the owner of this and is used to encode peer. The this context is

used as the owner of rep references. In assignment 1, we substitute the actual context this for

the formal context owner and Shape<owner> for X, the result is GUList<this, Shape<owner>>

and corresponds to the universes version. In assignment 2, after substitution, x.f has the owner

x, this is abstracted using a close expression to give the existential type of xF. In universes,

the viewpoint is adapted to any because there is no annotation that corresponds to an object

owned by x. Thus, viewpoint adaptation corresponds to substitution and abstraction.

Since xF has existential type it must be unpacked in Jo∃ before being accessed in assignments

3 and 4. In assignment 3, the owner of the right-hand side is oo, a context variable introduced
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class GUList<owner, X> {
GUList<owner, X> next;
X datum;

}

class C<owner> {
GUList<this, Shape<owner>> f;
void m(C<owner> x) {

GUList<this, Shape<owner>> iNext = f.next; //1
∃o.GUList<o, Shape<owner>> xF = close x.f with o hiding x; //2
open xF as y,oo in {

∃o.GUList<o, Shape<owner>> xNext = close y.next with o hiding oo;
//3

∃o.Shape<o> xDatum = close y.datum with o hiding owner; //4
}

}
}

Figure 5.3: The universes list in Jo∃.

by unpacking, a close expression must be used to abstract this context to ensure that no

free variables escape the body of the open expression. Again, this abstraction corresponds to

viewpoint adaptation. In assignment 4, packing corresponds with subtyping in universes. The

hidden context (owner) can be represented using peer in universes.

The universes type system enforces the owners-as-modifiers discipline, rather than owners-as-

dominators. Extending Jo∃ to satisfy owners-as-modifiers would be interesting future work.

An alternative way to formalise the universe type system is using a lost modifier [36]. This

modifier works in the same way as the unknown context in effective ownership (see below) or the

abstract contexts of variant ownership (see above). A type annotated with lost corresponds

to an unpacked existential type in Jo∃. In the example in figure 5.3, y could be given the type

lost GUList<peer Shape>.

Effective Ownership The any context is also used to facilitate variance in effective own-

ership [57] (section 2.5.3). During field and method type lookup, all substitutions of any for

x are replaced with substitutions of unknown for x. A type parameterised by unknown has no

variant subtypes, it is similar to the abstract contexts of variant ownership types [57], see above.

This system gives the same results as strict lookup in MOJO and, in the same way as MOJO,

corresponds to the existential types of Jo∃. Similarly to variant ownership types and MOJO,
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it should be possible to encode the ownership structure of effective ownership in Jo∃. Effective

owners (per-method owners) are currently beyond the scope of Jo∃. An effective owner cannot

be any, and so there is no variance aspect to these owners.

5.3.2 Existential Types

System Fown Existential quantification of ownership domains in System Fown [56] (sec-

tion 2.5.4) allows domains to be passed around without having to be able to name them.

System Fown does not have subtyping and so existential quantification does not lead to vari-

ance. System Fown also supports existential quantification of types, absent in Jo∃.

System Fown is a core functional calculus and a formalisation of ownership domains, and has

different design goals from Jo∃. Therefore, it is difficult to make a direct comparison between the

two languages. Existential quantification in Jo∃ can be used to pass around objects whose types

include unnameable contexts. This is less useful in Jo∃ because contexts cannot be created by

expressions. Existential types in System Fown include information about the domain in which

they were created. This is not required in Jo∃, but might be useful if we added support for

ownership domains and their associated encapsulation properties.

Infinitary ownership types Infinitary ownership types [30] (section 2.5.4) use existential

types to abstract contexts which cannot be named and therefore avoid dependent typing. Exis-

tential types in Jo∃ can be used in the same way. However, since contexts cannot be dynamically

created in Jo∃, abstraction is not necessary to avoid dependent typing.

Jo∃ allows the use of quantified contexts as the owner of a type, whilst this is forbidden by

Clarke [30]. Owners-as-dominators is satisfied because Jo∃ supports lower bounds on quantified

contexts. Lower bounds are used to ensure that existential quantification cannot be used to

violate owners-as-dominators.
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Dynamic downcasting Existential owners can be used in dynamic casts [98] (section 2.5.4).

Casts are not supported in Jo∃, but they should be straightforward to add. Existential down-

casting could then be encoded in Jo∃ by casting using an existential type. To express the

behaviour of dynamic downcasting in Jo∃, the expression being cast should be unpacked at the

outermost scope of the method in which the cast appears. For example, the following method:

void m(Object<this> x) {

List<this, d> l = (List<this, d>)x;

Object<d> = l.get(0);

}

Would be encoded as:

void m(Object<this> x) {

open (∃dd.List<this, dd>)x as xx,d in {

List<this, d> l = xx;

Object<d> = l.get(0);

}

}

The encoding of existential downcasting in Jo∃ shows clearly the relationship to existential

types and unpacking, and precisely defines the scope of introduced context variables.

5.4 Chapter Summary

In this chapter we have compared our treatment of Java wildcards with our treatment of

variance in an ownership system. We have compared Tame FJ and Jo∃— our formal models

for Java wildcards and variant ownership; including a comparison of proofs of soundness for

these systems. The two systems were more similar than different; the main differences stem

from the separation of contexts from types in Jo∃, this simplifies the underlying system and

allows us to use explicit packing and unpacking to formalise it more simply. We have presented

related work: alternative models for Java with wildcards and alternative approaches to variance

and existential types in the ownership world. In particular, we have shown how Jo∃ can be

used to examine existing systems that include these features. By using Jo∃ to encode dynamic
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downcasting we make explicit where existential types are used and how they are unpacked;

by encoding generic universes we show how the universe annotations and viewpoint adaption

relate to ownership annotations, substitution, and packing and unpacking.



Chapter 6

Conclusions

Subtype variance increases the flexibility of parametric type systems, improves reuse, and re-

duces the use of casts and thus runtime type errors. Existential types are a good fit for

modelling subtype variance. Existential types are well-understood and their typing properties

closely match those of systems with use-site subtype variance.

We have investigated the relationship between existential types and subtype variance in the

contexts of generics and ownership types. We have presented Tame FJ, a formal model for

Java with wildcards, and Jo∃, an expressive model for subtype variance in ownership types

languages.

To the best of our knowledge, Tame FJ is the first type sound model for Java that includes

all the relevant features of wildcard types. We have shown through discussion and a formal

translation, that Tame FJ is a satisfactory model for Java wildcards.

Jo∃ is an ownership language with expressive, uniform, and general subtype variance. Jo∃ is

more expressive than previous work because of the use of existential quantification of contexts

and their combination with type parameterisation. Jo∃ uses existential types to support context

variance in a uniform and transparent fashion. We have extended Jo∃ to support owners-as-

dominators and proved both versions sound.

We have compared Tame FJ to Jo∃ to show the similarities and differences in using existential
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types for variance in different contexts. Jo∃ can be used to compare and encode ownership

systems with existential types or different kinds of variance. Existing mechanisms for supporting

context variance have the same behaviour as existential types in Jo∃ and can be easily encoded

(even if other language features cannot). Explicit existential types can give us a clearer picture

of the underlying mechanisms used in type checking. Jo∃ can also be used to encode existing

kinds of existential types in ownership systems with similar benefits.

Critique

We have not proved that Tame FJ is an accurate model for Java with wildcards. Although

the translation from Java to Tame FJ is straightforward, it is non-trivial and it is possible,

although, we believe, unlikely, not to be type preserving. It would be preferable if Tame FJ

were a strict subset of Java, like Wild FJ [60], so that a translation would be unnecessary.

Tame FJ is an abstraction of Java. It follows the standard approach for such models [53, 60],

and we are satisfied that it contains all the features that are relevant to type checking. But

of course, it does not support all the features of Java; it is possible that some missing feature

could cause an unsoundness in the type system. Unfortunately, it is not currently practicable

to prove properties for entire programming languages, so the accusation of missing features

could be applied to any model. Finally, the soundness proof of Tame FJ is long and complex;

it is possible, even probable, that there are errors in the proof. A machine checked proof would

address this criticism and is planned for future work.

Tame FJ does not feel like an optimal model, it has a few rough edges. It could probably

be made neater and more elegant. Packing using guarding environments and the treatment

of well-formed type environments (which requires distinguishing between extended subclassing

and subtyping) are areas that cry out for a better solution.

Jo∃ could be criticised for omitting subclassing, since it is considered a key part of object-

oriented languages. However, subclassing is unrelated to ownership and variance, the focus of

Tame FJ, and so we believe eliding it is a justified abstraction.
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On the other hand, the treatment of bounds on type variables could be improved. Allowing

user-specified, type based bounds would be preferable to the current system of generating

bounds on the owners of type variables. It would be preferable because it is not much more

complex and more realistic. It would also address the slightly objectionable presence of Ψ (an

environment recording the bounds on the owners of type variables) in the type system.

6.1 Further Work

Further work for this thesis follows the directions of its major strands. Tame FJ could be

extended and improved, and Jo∃ could be further investigated and more widely applied. We

also have an idea for the less conservative type checking of wildcard types.

6.1.1 Tame FJ

Tame FJ could be extended in many ways to be a more complete model for Java. Possible ex-

tensions include imperative features, casts, interfaces (and the associated multiple inheritance),

intersection types for bounds, and raw types.

It would be interesting to prove properties other than type soundness for Tame FJ and Java

with wildcards. The most important is probably decidability (or undecidability, as it may turn

out). Soundness and completeness for the translation from Java to Tame FJ, completeness

of Tame FJ subtyping, and that an erasure translation of Tame FJ is sound would also be

interesting. Mechanising the proof of soundness for Tame FJ is highly desirable.

The wildcards approach to existential types contains several features not present in the tra-

ditional approach, which is not expressive enough to model Java with wildcards. It would

be interesting to formulate a minimal calculus, with a similar scope to System F<:, that in-

cludes the key features of the wildcards approach, such as implicit packing and unpacking,

quantification of multiple variables, F-bounds, and type parameter inference.
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6.1.2 Improving Wildcards in Java

There are some programs in Java that are safe, but which are rejected by the type checker.

In terms of existential types, the scope of unpacking is too small. Java limits the scope of

unpacking to the smallest enclosing sub-expression. If this were extended to a larger scope,

for example, an entire method, then more programs could be accepted with no change to the

syntax or other parts of the type system and without compromising soundness. For example,

class C<X> {

C<X> f;

void m(C<?> x) {

x.f = x.f;

}

}

In Java, m does not type check because the two x.f sub-expressions are unpacked separately.

If the scope of unpacking were extended to the whole method, then this expression would type

check.

This could be formalised using a dot notation. In the example, x would still have type ∃X.C<X>,
but it would be unpacked to C<x.X> rather than C<X>, that is, the source of the type variable

is remembered. By doing this, a fresh type variable is not needed each time x is unpacked, in

effect, it is only being unpacked once.

This approach could run into difficulties when alpha renaming of existential types is considered.

Furthermore, it appears unstable in the presence of concurrency: in the example, if a different

object is assigned to x during the assignment, then this could result in a type error. We extend

m to show how:

C<Dog> d = new C<Dog>();

C<?> x = d;

C<?> y = new C<Object>();

y.f = y.f; | y = x;

d.f.bark(); //potential method not found error

We use | to denote two expressions executing in parallel. If y = x is executed after the right-

hand side of y.f = y.f, but before the left-hand side, then x.f (and thus d.f) could be set to
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an Object. This violates type safety because d is expected to have a Dog in f, not an Object.

There are certainly solutions to this problem, such as using locks or requiring variables used

before the dot to be constant, but there is much work to be done.

6.1.3 Jo∃

Jo∃ is restricted in several ways; we described how these restrictions could be lifted in sec-

tion 4.4. We would like to extend and apply Jo∃ in several other directions: support for the

owners-as-modifiers property, which would facilitate modelling universe types; integration with

OGJ, which could lead to a smaller and more practical language; and application to multiple

ownership [23] and ownership domains [6].

We give an example of how existential quantification could be combined with multiple ownership

in a possible extension to the MOJO language [23]. Class declarations in MOJO are similar to

those in standard ownership languages and Jo∃. Given a class C that is declared to take a single

context parameter, we can create types such as C<a> and C<a & b> in MOJO (where a and b are

final variables). Using existential types we could create types such as ∃o intersects a.C<o>

and ∃o intersects a & b.C<o>1, which correspond to C<a & ?> and C<a & b & ?> respec-

tively in MOJO. We could also write ∃o disjoint a.C<o>, to denote objects owned by some

context that does not intersect with a. This type has no equivalent in MOJO. It would be

interesting to consider if C<∅> in MOJO has a behavioural equivalent to some existential type

(perhaps ∃o.C<o>).

The requirement for variance is much more common in MOJO than in single ownership systems.

This is because users of a class are often only concerned with one of several owners. For example,

an object might be required to be owned by this along with some other objects. Extending this

concept to collections requires that each element in the collection may have different owners as

well as the specified one. In MOJO, this variance must be hard coded; for example, a (variant)

list in MOJO would be declared as:

1Which are probably equivalent to ∃o.C<o & a> and ∃o.C<o & a & b>.
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class MOJOList<o, d> {

Object<d & ?> datum;

MOJOList<o, d> next;

}

If this class is instantiated as MOJOList<this, a>, then items in the list could be owned by a

and some other objects. Using List<this, a & ?> (see section 2.5) does not accomplish this

because it requires that all the data in the list have the same owners.

As well as increased expressivity and cleaner type checking, using existential quantification and

type parameterisation in MOJO would mean that classes can be written in exactly the same

way as classes in single ownership systems. By using the GenericList class (see section 4.1.2)

with existential types (for example, GenericList<this, ∃o intersects a.Object<o>>), the

single ownership list can be used in MOJO without modification. This fits nicely with the

philosophy of MOJO, that only the users of classes should be aware of the multiplicity of

ownership.

It would be useful to do some large scale case studies of how variant ownership would actually

be used. We suspect that use cases in the ownership world would differ significantly from those

of parametric types. Such case studies would motivate further work on variance in ownership

languages.

We would like to develop an expressive and user-friendly syntax to accompany Jo∃. Such a

syntax would either involve some indicator of the scope of quantification2, or be unable to

denote some types, as in Java wildcards. Case studies should help identify which types can be

relegated to being expressible, but not denotable.

2For example, in ∃X.C<C<X>> and C<∃X.C<X>>, “∃X.” marks the scope of quantification and X makes the
position of the quantified variable. In C<C<?>>, ? marks the position of the quantified variable, but the scope
of quantification is fixed by convention.



Appendix A

Proofs of properties of Tame FJ

For all lemmas and theorems we require the additional premise that the program is well-formed,
i.e., for all class declarations, Q, in the program, ` Q ok. Throughout, we assume the Barendregt
convention, i.e., bound and free variables are distinct.

To use the premises of a judgement in a proof where we have the conclusion, an inversion lemma
is required. However, where a judgement is syntax directed we reduce trivial overhead by using
the inversion of the judgment directly in the proof.

Full proofs of all lemmas can be downloaded from:

http://www.doc.ic.ac.uk/˜ncameron/papers/cameron ecoop08 full.pdf

A.1 Outline of proofs

The lemmas in the next section are sequenced so that they only use earlier lemmas; this
ensures non-circularity. Most of the early lemmas prove “common-sense” properties about
Tame FJ: lemmas 1 to 6 and 18 to 21 and 25 and 26 prove that the various relations and
judgements are preserved under substitution of types and expressions, lemma 7 proves that
guarding environments behave properly under alpha renaming, lemmas 8 to 11 prove weakening,
lemmas 12 to 14 prove “obvious” properties about type environments, lemma 15 is a simple
property of substitution, lemmas 27 to 30 prove that the results of various operations are
well-formed, and lemmas 31 to 33 are standard inversion lemmas. These lemmas are used
throughout the proofs and are mostly straightforward to prove.

Lemmas 16 and 22 to 24 prove that the subclassing relation preserves properties of types; these
are all fairly simple lemmas, reflecting the simplicity of the subclassing relation. Lemmas 36
and 37 relate subclassing to the match relation and are more complicated. Lemma 17 relates
subtyping to extended subclassing, lemma 34 relates subclassing to extended subclassing, and
lemma 35 relates extended subclassing to subclassing. Lemmas 38 to 40 relate method bodies
and types, and the lookup functions for fields; these are simple lemmas.

The most work is done in the proofs of the theorems themselves and of lemmas 2–4, 17, 21, 25,
29, and 35–37. At the highest level, in each case of the proof of subject-reduction, the standard
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steps are followed at first (such as using the inversion lemmas, examining the premises of the
type rules), then various ‘big’ lemmas are used to reduce the complexity of the case (that
is, decompose complicated relations involving subtyping and match etc. into easier relations,
familiar from FGJ [53] etc., and involving subclassing), the properties of subclassing are used
to show some preservation of properties of types which are used to give the result. The hardest
case is method invocation due to the match and sift relations and inheritance; field access is
also complex due to inheritance.

A.2 Proofs

Lemma 1. (Substitution preserves subclassing)

If:
a. ` R @@: R′

then:

` [T/X]R @@: [T/X]R
′

Proof is by structural induction on the derivation of ` R @@: R′

Lemma 2. (Subsititution preserves matching)

If:

a. match(R,∃∆.R′, P, Y, U)
b. (X ∪ fv(T)) ∩ Y) = ∅

then:

match([T/X]R, [T/X]∃∆.R′, [T/X]P, Y, [T/X]U)

1.

1. ∀i where Pi 6= ? : Ui = Pi

2.

2. ∀j where Pj = ? : Yj ∈ fv(R′)

3.

3. ` R @@: [U/Y,U′/Z]R′

4.

4. dom(∆) = Z

5.

5. fv(U, U′) ∩ Y, Z = ∅





by premises of match

6.

6. Z are fresh by 4, Barendregt

7.

7. ` [T/X]R @@: [T/X][U/Y,U′/Z]R′ by 3, lemma 1

8.

8. ` [T/X]R @@: [[T/X]U/Y,[T/X]U′/Z][T/X]R′ by 7, 6, b

9.

9. ∀i where [T/X]Pi 6= ? : [T/X]Ui = [T/X]Pi by 1, def subst

10.

10. ∀j where [T/X]Pj = ? : Yj ∈ fv([T/X]R′) by 2, b, def subst

11.

11. fv([T/X]U, [T/X]U′) ∩ Y, Z = ∅ by 5, 6, b

12.

12. match([T/X]R, [T/X]∃∆.R′, [T/X]P, Y, [T/X]U) by 9, 10, 8, 4, 11

Lemma 3. (Substitution on U preserves sift)
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If:
a. sift(R, U, Y) = (Rr, Tr)
b. (fv(T) ∪ X) ∩ Y = ∅

then:

sift(R, [T/X]U, Y) = (Rr, [T/X]Tr)

Proof is by structural induction on the derivation of sift(R, U, Y) = (Rr, Tr) with a case analysis
on the last step:

Case 1. U = ∅

trivial

Case 2. U = ∃∆.N, U′

1.

1. R = R, R′

2.

2. (Rr, Tr) = (R, R′′, ∃∆.N, U′′)

}
by def sift

3.

3. sift(R′, U′, Y) = (R′′, U′′) by premise sift

4.

4. [T/X]U = ∃[T/X]∆.[T/X]N, [T/X]U′ by def subst

5.

5. sift(R′, [T/X]U′, Y) = (R′′, [T/X]U′′) by 3, b, ind hyp

6.

6. sift(R, [T/X]U, Y) = by 5, 4, 1, sift

(R, R′′, ∃[T/X]∆.[T/X]N, [T/X]U′′)

7.

7. sift(R, [T/X]U, Y) = (Rr, [T/X]Tr) by 6, 2

Case 3. U = ∃∅.Z, U′ ∧ Z 6∈ Y

1.

1. R = R, R′

2.

2. (Rr, Tr) = (R, R′′, ∃∅.Z, U′′)

}
by def sift

3.

3. sift(R′, U′, Y) = (R′′, U′′) by premise sift

4.

4. [T/X]U = [T/X]∃∅.Z, [T/X]U′ by def subst

5.

5. sift(R′, [T/X]U′, Y) = (R′′, [T/X]U′′) by 3, b, ind hyp

Case analysis on Z:

Case 1. Z 6∈ X

1.

1.1. [T/X]U = ∃∅.Z, [T/X]U′ by 4

2.

1.2. sift(R, [T/X]U, Y) = by 5, 1.1, 1, sift

(R, R′′, ∃∅.Z, [T/X]U′′)

3.

1.3. sift(R, [T/X]U, Y) = (Rr, [T/X]Tr) by 1.2, 2

Case 2. Z ∈ X

1.

2.1. Z = Xi

2.

2.2. [T/X]∃∅.Z = Ti by 2.1, def subst

3.

2.3. Ti = ∃∅.Z′ ∧ Z′ 6∈ Y ∨ Ti = ∃∆.N by b

4.

2.4. sift(R, [T/X]U, Y) = by 5, 2.3, 2.2, 4, 1, sift

(R, R′′, Ti, [T/X]U′′)

5.

2.5. sift(R, [T/X]U, Y) = (Rr, [T/X]Tr) by 2.3, 2.2, 2
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Case 4. U = ∃∅.Z, U′ ∧ Z ∈ Y

1.

1. R = R, R′

2.

2. (Rr, Tr) = (R′′, U′′)

}
by def sift

3.

3. [T/X]U = [T/X]∃∅.Z, [T/X]U′ by def subst

4.

4. [T/X]U = ∃∅.Z, [T/X]U′ by 3, b

5.

5. sift(R, [T/X]U, Y) = (R′′, [T/X]U′′) by 4, 1, sift

6.

6. done by 5, 2

Lemma 4. (Substitution on R preserves sift)

If:
a. sift(R, U, Y) = (Rr, Tr)
b. f is a mapping from and to types in the syntactic category R.

then:

sift(f(R), U, Y) = (f(Rr), Tr)

Proof is by structural induction on the derivation of sift(R, U, Y) = (Rr, Tr) with a case analysis
on the last step:

Case 1. U = ∅

trivial

Case 2. U = ∃∆.N, U′

1.

1. R = R, R′

2.

2. (Rr, Tr) = (R, R′′, ∃∆.N, U′′)

}
by def sift

3.

3. sift(R′, U′, Y) = (R′′, U′′) by premise sift

4.

4. f(R) = f(R), f(R′) by 1, c

5.

5. sift(f(R′), U′, Y) = (f(R′′), U′′) by 3, ind hyp

6.

6. sift(f(R), U, Y) = by 5, 4, sift

(f(R), f(R′′), ∃∆.N, U′′)

7.

7. sift(f(R), U, Y) = (f(Rr), Tr) by 6, 2

Case 3. U = ∃∅.Z, U′ ∧ Z 6∈ Y

1.

1. R = R, R′

2.

2. (Rr, Tr) = (R, R′′, ∃∅.Z, U′′)

}
by def sift

3.

3. sift(R′, U′, Y) = (R′′, U′′) by premise sift

4.

4. f(R) = f(R), f(R′) by 1, c

5.

5. sift(f(R′), U′, Y) = (f(R′′), U′′) by 3, b, ind hyp

6.

6. sift(f(R), U, Y) = by 5, 4, sift

(f(R), f(R′′), ∃∅.Z, U′′)

7.

7. sift(f(R), U, Y) = (f(Rr), Tr) by 6, 2

Case 4. U = ∃∅.Z, U′ ∧ Z ∈ Y
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1.

1. R = R, R′

2.

2. (Rr, Tr) = (R′′, U′′)

}
by def sift

3.

3. f(R) = f(R), f(R′) by 1, c

4.

4. sift(f(R), U, Y) = (f(R′′), U′′) by 3, sift

5.

5. done by 4, 2

Lemma 5. (Substitution preserves field type)

If:
a. fType(f, C<U>) = U

then:

fType(f, C<[T/X]U>) = [T/X]U

Proof is by induction on the derivation of fType(f, C<U>) = U

Lemma 6. (Substitution preserves method type)

If:

a. mType(m, C<U>) = <X′¢ T′>U′ → U

then:

mType(m, C<[T/X]U>) = [T/X](<X′¢ T′>U′ → U)

Proof is by induction on the derivation of mType(m, C<U>) = <X′¢ T′>U′ → U

Lemma 7. (Alpha renaming of guarding environments)

If:

a. ∆; Γ ` e : T | X→[Bl Bu]

b. Y are fresh
then:

∆; Γ ` e : [Y/X]T | Y→[[Y/X]Bl [Y/X]Bu]

Proof is by structural induction on the derivation of ∆; Γ ` e : T | X→[Bl Bu] with a case
analysis on the last step:

Case 1. (T-Var)

trivial since X→[Bl Bu] = ∅
Case 2. (T-New)

trivial since X→[Bl Bu] = ∅
Case 3. (T-Field)

1.

1. e = e′.f by def T-Field

2.

2. ∆;Γ ` e′ : ∃X→[Bl Bu].N | ∅

3.

3. fType(f, N) = T

}
by premises T-Field
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4.

4. ∆;Γ ` e′ : ∃Y→[[Y/X]Bl [Y/X]Bu].[Y/X]N | ∅ by 2, b, alpha conversion

5.

5. fType(f, [Y/X]N) = [Y/X]T by 3, lemma 5

6.

6. ∆;Γ ` e′.f : [Y/X]T | Y→[[Y/X]Bl [Y/X]Bu] by 4, 5, T-Field

7.

7. done by 6, 1

Case 4. (T-Invk)

1.

1. e = e′.<P>m(e)

2.

2. X→[Bl Bu] = ∆′, ∆

3.

3. T = [T/Z]U



 by def T-Invk

4.

4. ∆; Γ ` e′ : ∃∆′.N | ∅

5.

5. mType(m, N) = <Z¢ B>U→ U

6.

6. ∆; Γ ` e : ∃∆.R | ∅

7.

7. match(sift(R, U, Z), P, Z, T)

8.

8. ∆ ` P ok

9.

9. ∆, ∆′, ∆ ` T <: [T/Z]B

10.

10. ∆, ∆′, ∆ ` ∃∅.R <: [T/Z]U





by premises T-Invk

11.

11. let ∆′ = X′ →[B′l B′u]

12.

12. let ∆ = X→[Bl Bu]

13.

13. X = X′, X by 11, 12, 2

14.

14. let ∆′′ = Y′ →[[Y/X]B′l [Y/X]B′u]

15.

15. let ∆′ = Y→[[Y/X]Bl [Y/X]Bu]

16.

16. Y→[[Y/X]Bl [Y/X]Bu] = ∆′′, ∆′ by 14, 15, 13

17.

17. ∆;Γ ` e′ : ∃∆′′.[Y/X]N | ∅ by 4, alpha conversion

18.

18. ∆;Γ ` e : ∃∆′.[Y/X]R | ∅ by 6, alpha conversion

19.

19. mType(m, [Y/X]N) = [Y/X]<Z¢ B>U→ U by 5, lemma 6

20.

20. match(sift([Y/X]R, [Y/X]U, Z), [Y/X]P, Z, [Y/X]T)
by 7, lemma 2

21.

21. [Y/X]P = P by 8

22.

22. match(sift([Y/X]R, [Y/X]U, Z), P, Z, [Y/X]T) by 20, 21

23.

23. ∆, ∆′′, ∆′ ` [Y/X]T <: [Y/X][T/Z]B by 9, b, alpha conversion

24.

24. ∆, ∆′′, ∆′ ` ∃∅.[Y/X]R <: [Y/X][T/Z]U by 10, b, alpha conversion

25.

25. ∆, ∆′′, ∆′ ` [Y/X]T <: [[Y/X]T/Z][Y/X]B by 23, distinctness of formal type variables

26.

26. ∆, ∆′′, ∆′ ` ∃∅.[Y/X]R <: [[Y/X]T/Z][Y/X]U by 24, distinctness of formal type variables

27.

27. ∆;Γ ` e′.<P>m(e) : [[Y/X]T/Z][Y/X]U | Y→[[Y/X]Bl [Y/X]Bu]
by 17, 19, 18, 22, 8, 25, 26, T-Invk

28.

28. ∆;Γ ` e′.<P>m(e) : [Y/X][T/Z]U | Y→[[Y/X]Bl [Y/X]Bu]
by 27, distinctness of formal type variables

29.

29. done by 28, 1

Case 5. (T-Subs)

trivial since X→[Bl Bu] = ∅
Lemma 8. (Weakening of uBound)

If:
a. uBound∆,∆′(B) = B′

b. dom(∆, ∆′) ∩ dom(∆′′) = ∅
then:

uBound∆,∆′′,∆′(B) = B′
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Proof is by structural induction on the derivation of uBound∆,∆′(B) = B′

Lemma 9. (Weakening of subtyping)

If:
a. dom(∆, ∆′) ∩ dom(∆′′) = ∅

and if:
b. ∆, ∆′ ` B @: B′

then:
c. ∆, ∆′′, ∆′ ` B @: B′

and if:
d. ∆, ∆′ ` B <: B′

then:
∆, ∆′′, ∆′ ` B <: B′

Proof is by structural induction on ∆, ∆′ ` B¿ B′ where ∆ ` B¿ B′ is defined to hold if either
∆ ` B @: B′ or ∆ ` B <: B′ holds. There is a case analysis on the last step:

Lemma 10. (Weakening of well-formedness)

If:
a. dom(∆, ∆′) ∩ dom(∆′′) = ∅
b. ∆, ∆′ ` ψ ok

and if:
c. ψ = ∆′′′ then dom(∆, ∆′, ∆′′′′) ∩ dom(∆′′) = ∅

where:
d. ψ ::= ∆′′′ | B | R | ?

then:
∆, ∆′′, ∆′ ` ψ ok

Proof. structural induction on the derivation of ∆, ∆′ ` ψ ok

Lemma 11. (Weakening of Typing)

If:
a. dom(∆, ∆′, ∆′′′) ∩ dom(∆′′) = ∅
b. dom(Γ, Γ′′) ∩ dom(Γ′) = ∅
c. ∆, ∆′; Γ, Γ′′ ` e : T |∆′′′

then:
∆, ∆′′, ∆′; Γ, Γ′, Γ′′ ` e : T |∆′′′

Proof is by structural induction on the derivation of ∆, ∆′; Γ, Γ′′ ` e : T |∆′′′

Lemma 12. (Well-formed type environments are disjoint)
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If:
a. ∆ ` ∆′ ok

then:
dom(∆) ∩ dom(∆′) = ∅

Proof is by structural induction on the derivation of ∆ ` ∆′ ok

Lemma 13. (Extension of type environments preserves well-formedness)

If:
a. ∆ ` ∆′ ok
b. ∆, ∆′ ` ∆′′ ok

then:
∆ ` ∆′, ∆′′ ok

Proof is by structural induction on the derivation of ∆ ` ∆′ ok

Lemma 14. (Concatenation of type environments preserves well-formedness)

If:
a. ∆ ` ∆′ ok
b. ∆ ` ∆′′ ok
c. dom(∆′) ∩ dom(∆′′) = ∅

then:
∆ ` ∆′, ∆′′ ok

Proof is by induction on the size of ∆′

Lemma 15. (Limited commutativity of substitution)

If:

a. [U/X][U′/X′]T = T′

b. X ∩ fv(U′) = ∅
c. X′ ∩ fv(U) = ∅
d. X ∩ X′ = ∅

then:

[U′/X′][U/X]T = T′

Proof is by structural induction on the form of T:

Lemma 16. (Subclassing preserves class type)

If:
a. ` R @@: N

then:
R = N′
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Proof is by structural induction on the derivation of ` R @@: N

Lemma 17. (uBound refines subtyping)

If:
a. ` ∆ ok

and if:
b. ∆ ` T @: T′

or:
c. ∆ ` T <: T′

then:
∆ ` uBound∆(T) @: uBound∆(T′)

Proof is by structural induction on ∆ ` T ¿ T′ where ∆ ` T ¿ T′ is defined to hold if either
∆ ` T @: T′ or ∆ ` T <: T′ holds. There is a case analysis on the last step:

Case 1. (XS-Reflex)

trivial

Case 2. (XS-Sub-Class, XS-Env)

easy since T = ∃∆′.N and T′ = ∃∆′′.N′ and ∀∃∆′.N : uBound∆(∃∆′.N) = ∃∆′.N

Case 3. (XS-Bottom)

N/A

Case 4. (S-SC)

easy, by ind hyp.

Case 5. S-Bound upper bound

1.

1. T = ∃∅.X

2.

2. T′ = Bu

}
by def S-Bound

3.

3. ∆(X) = X→[Bl Bu] by premise of S-Bound

4.

4. uBound∆(X) = uBound∆(Bu) by def uBound, 3

5.

5. done by 4, XS-Reflex

Case 6. S-Bound lower bound

1.

1. T = Bl

2.

2. T′ = ∃∅.X
}

by def S-Bound

3.

3. ∆(X) = X→[Bl Bu] by premise of S-Bound

4.

4. uBound∆(X) = uBound∆(Bu) by def uBound, 3

5.

5. ∆ ` uBound∆(Bl) @: uBound∆(Bu) by 3, a, def F-Env

6.

6. done by 5, 4, 2, 1 SC-Reflex

Case 7. (XS-Trans)

1.

1. ∆ ` T @: T′′

2.

2. ∆ ` T′′ @: T′

}
by premises of XS-Trans/S-Trans
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3.

3. ∆ ` uBound∆(T) @: uBound∆(T′′) by 1, a, ind hyp

4.

4. ∆ ` uBound∆(T′′) @: uBound∆(T′) by 2, a, ind hyp

5.

5. ∆ ` uBound∆(T) @: uBound∆(T′) by 3, 4, XS-Trans

Case 8. (S-Trans)

similar to case XS-Trans

Corollary If ∆ ` ∃∆′.N <: ∃∆′′.N′ and ` ∆ ok then ∆ ` ∃∆′.N @: ∃∆′′.N′.

Lemma 18. (Subsititution preserves subtyping)

If:

a. ∆1 ` T <: [T/X]Bu

b. ∆1 ` [T/X]Bl <: T

c. ∆ = ∆1, X→[Bl Bu], ∆2

d. ∆′ = ∆1, [T/X]∆2

e. X ∩ fv(∆1) = ∅
f. fv(T) ⊆ dom(∆′)

and if:
g. ∆ ` B <: B′

then:

∆′ ` [T/X]B <: [T/X]B′

and if:
h. ∆ ` B @: B′

then:

∆′ ` [T/X]B @: [T/X]B′

Proof is by structural induction on ∆ ` B ¿ B′ where ∆ ` B ¿ B′ is defined to hold if either
∆ ` B @: B′ or ∆ ` B <: B′ holds. There is a case analysis on the last step:

Lemma 19. (Subsititution preserves well-formedness)

If:
a. ∆ ` ψ ok

b. ∆1 ` T <: [T/X]Bu

c. ∆1 ` [T/X]Bl <: T

d. ∆ = ∆1, X→[Bl Bu], ∆2

e. ∆′ = ∆1, [T/X]∆2

f. X ∩ fv(∆1) = ∅
g. ∆1 ` T ok
h. ∅ ` ∆′ ok

where:
i. ψ ::= ∆p | B | R | ?

then:

∆′ ` [T/X]ψ ok
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Proof is by structural induction on the derivation of ∆ ` ψ ok

Lemma 20. (Corollary to lemma 19)

If:
a. ∆ ` ψ ok

b. ∆1 ` T <: [T/X]Bu

c. ∆1 ` [T/X]Bl <: T

d. ∆ = ∆1, X→[Bl Bu], ∆2

e. ∆′ = ∆1, [T/X]∆2

f. X ∩ fv(∆1) = ∅
g. ∆1 ` T ok
h. ∅ ` ∆1 ok

i. ∆1, X→[Bl Bu] ` ∆2 ok
where:

j. ψ ::= ∆p | B | R | ?
then:

∆′ ` [T/X]ψ ok

Lemma 21. (Subsititution preserves typing)

If:
a. ∆; Γ ` e : T |∆′′

b. ∆1 ` T <: [T/X]Bu

c. ∆1 ` [T/X]Bl <: T

d. ∆ = ∆1, X→[Bl Bu], ∆2

e. ∆′ = ∆1, [T/X]∆2

f. X ∩ fv(∆1) = ∅
g. ∆1 ` T ok
h. ∅ ` ∆1 ok

i. ∆1, X→[Bl Bu] ` ∆2 ok
then:

∆′; [T/X]Γ ` [T/X]e : [T/X]T | [T/X]∆′′

Proof is by structural induction on the derivation of ∆; Γ ` e : T |∆′′

Lemma 22. (Superclasses are well-formed)

If:
a. ` R @@: R′

b. ∆ ` R ok
c. ∅ ` ∆ ok

then:
∆ ` R′ ok
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Proof is by structural induction on the derivation of ` R @@: R′

Lemma 23. (Subclassing preserves field types)

If:
a. ` N @@: N′

b. fType(f, N′) = T

then:
fType(f, N) = T

Proof is by structural induction on the derivation of ` N @@: N′

Lemma 24. (Subclassing preserves method return type)

If:
a. ` N1 @@: N2

b. mType(m, N2) = <Y¢ Tu>T→T

then:
mType(m, N1) = <Y¢ Tu>T→T

Proof is by structural induction on the derivation of ` N1 @@: N2

Lemma 25. (Expression substitution preserves typing)

If:
a. ∆; Γ, x:U ` e : T |∆′

b. ∆; Γ ` e′ : U′ | ∅
c. ∆ ` U′ <: U
d. ∆ ` U ok

then:
∆; Γ ` [e′/x]e : T |∆′

Proof is by structural induction on the derivation of ∆; Γ, x:U ` e : T |∆′

Lemma 26. (Corollary to lemma 25)

a. ∆; Γ, x:U ` e : T |∆′

b. ∆ ` U′ <: U
c. ∆ ` U ok

then:
∆; Γ, x:U′ ` e : T |∆′

Lemma 27. (fType gives well-formed types)
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If:
a. fType(f, C<U>) = T

b. ∅ ` ∆ ok
c. ∆ ` ∃∆′.C<U> ok

then:
∆, ∆′ ` T ok

Proof is by induction on the derivation of fType(f, C<U>) = T

Lemma 28. (mType gives well-formed types)

If:
a. mType(m, C<U>) = <Y¢ Tu>T→T

b. ∅ ` ∆ ok
c. ∆ ` ∃∆′.C<U> ok

then:

∆, ∆′, Y→[⊥ Tu] ` T ok

∆, ∆′, Y→[⊥ Tu] ` T ok

∆, ∆′, Y→[⊥ Tu] ` Tu ok

Proof is by induction on the derivation of mType(m, C<U>) = <Y¢ Tu>T→T

Lemma 29. (match gives well-formed types)

If:
a. ∆ ` P ok

b. ∆ ` ∃∆.R ok
c. ∅ ` ∆ ok

d. match(R,∃∆′.R′, P, Y, T)
then:

∆, ∆ ` T ok

1.

1. ∀i where Pi 6= ? : Ti = Pi

2.

2. ∀j where Pj = ? : Yj ∈ fv(R′)

3.

3. ` R @@: [T/Y,T′/X]R′

4.

4. dom(∆) = X

5.

5. fv(T, T′) ∩ Y, X = ∅





by d, def match

6.

6. ∆, ∆ ` R ok

7.

7. ∆ ` ∆ ok

}
by b, def F-Exist

8.

8. ∅ ` ∆, ∆ ok by 7, c, lemma 13

9.

9. ∆, ∆ ` [T/Y,T′/X]R′ ok by 3, 6, 8, lemma 22

Case analysis on each Ti ∈ T:

Case 1. Pi 6= ?
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1.

1.1. ∆ ` Pi ok by a

2.

1.2. ∆, ∆ ` Pi ok by 1.1, 8, lemma 10

3.

1.3. ∆, ∆ ` Ti ok by 1.2, 1

Case 2. Pi = ?

1.

2.1. Yi ∈ fv(N′) by 2

2.

2.2. let N′ = C<U>

3.

2.3. [T/Y,T′/X]N′ = C<[T/Y,T′/X]U> by 2.2, def subst

4.

2.4. ∃N′j such that[T/Y,T′/X]N
′
j = Cj<...,Ti,...> by 2.1, 2.3

5.

2.5. ∆, ∆ ` Ti ok by 2.4, 9, def F-Class

Lemma 30. (Typing gives well-formed types)

If:
a. ∆; Γ ` e : T |∆′

b. ∅ ` ∆ ok
c. ∀x ∈ dom(Γ) : ∆ ` Γ(x) ok

then:
∆, ∆′ ` T ok

Proof is by structural induction on the derivation of ∆; Γ ` e : T |∆′

Lemma 31. (Inversion Lemma (object creation))

If:
a. ∆; Γ ` new C<T>(e) : T |∆′

then:
∆′ = ∅
∆ ` C<T> ok
fields(C) = f

fType(f, C<T>) =U

∆; Γ ` e : U | ∅
∆ ` ∃∅.C<T> <: T

Proof is by structural induction on the derivation of ∆; Γ ` new C<T>(e) : T |∆′

Lemma 32. (Inversion Lemma (field access))

If:
a. ∆; Γ ` e.f : T |∆′

b. ∆ ` ∆′ ok
then:

there exists ∆n

where:
∆ ` ∆′, ∆n ok
∆; Γ ` e : ∃∆′, ∆n.N | ∅
∆, ∆′, ∆n ` fType(f, N) <: T
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Proof is by structural induction on the derivation of ∆; Γ ` e.f : T |∆′

Lemma 33. (Inversion Lemma (method invocation))

If:
a. ∆; Γ ` e.<P>m(e) : T |∆′

b. ∅ ` ∆ ok
c. ∆ ` ∆′ ok
d. ∀x ∈ dom(Γ) : ∆ ` Γ(x) ok

then:
there exists ∆n

where:
∆′, ∆n = ∆′′, ∆
∆ ` ∆′, ∆n ok
∆; Γ ` e : ∃∆′′.N | ∅
mType(m, N) = <Y¢ B>U→ U

∆; Γ ` e : ∃∆.R | ∅
match(sift(R, U, Y), P, Y, T)
∆ ` P ok

∆, ∆′′, ∆ ` T <: [T/Y]B

∆, ∆′′, ∆ ` ∃∅.R <: [T/Y]U

∆, ∆′′, ∆n ` [T/Y]U <: T

Proof is by structural induction on the derivation of ∆; Γ ` e.<P>m(e) : T |∆′

Lemma 34. (Subclassing gives extended subclassing)

If:
a. ` R′ @@: R

then:
∆ ` ∃∆′.R′ @: ∃∆′.R

Proof is by structural induction on the derivation of ` R′ @@: R

Lemma 35. (Extended subclassing gives subclassing)

If:

a. ∆ ` ∃∆′.R′ @: ∃X→[Bl Bu].R

b. ∆ ` ok
then:

there exists T

where:

` R′ @@: [T/X]R

∆, ∆′ ` T <: [T/X]Bu

∆, ∆′ ` [T/X]Bl <: T
fv(T) ⊆ dom(∆, ∆′)
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Proof is by structural induction on the derivation of ∆ ` ∃∆′.R′ @: ∃X→[Bl Bu].R with a case
analysis on the last step:

Case 1. (XS-Reflex)

Easy, using SC-Reflex, T = X and S-Bound.

Case 2. (XS-Trans)

1.

1. ∆ ` ∃∆′.R′ @: B

2.

2. ∆ ` B @: ∃X→[Bl Bu].R

}
by premises XS-Trans

3.

3. B = ∃X′ →[B′l B′u].R
′′ by 1 gives B 6=⊥

4.

4. wlog assume X′ are fresh by 3, Barendregt

5.

5. there exists U′

6.

6. ` R′ @@: [U′/X′]R
′′

7.

7. ∆, ∆′ ` U′ <: [U′/X′]Bu

8.

8. ∆, ∆′ ` [U′/X′]Bl <: U′

9.

9. fv(U′) ⊆ dom(∆,∆′)





by 1, 3, b, ind hyp

10.

10. there exists U

11.

11. ` R′′ @@: [U/X]R

12.

12. ∆, X′ →[B′l B′u] ` U <: [U/X]B′u

13.

13. ∆, X′ →[B′l B′u] ` [U/X]B′l <: U

14.

14. fv(U) ⊆ dom(∆), X′





by 2, 3, b, ind hyp

15.

15. ` [U′/X′]R
′′ @@: [U′/X′][U/X]R by 11, lemma 1

16.

16. ` R′ @@: [U′/X′][U/X]R by 6, 15, SC-Trans

17.

17. ` R′ @@: [[U′/X′]U/X]R by 16, 4

18.

18. ∆, ∆′, X′ →[B′l B′u] ` U <: [U/X]Bu by 12, 4, lemma 9

19.

19. ∆, ∆′, X′ →[B′l B′u] ` [U/X]Bl <: U by 13, 4, lemma 9

20.

20. ∆, ∆′ ` [U′/X′]U <: [U′/X′][U/X]Bu by 18, 7, 8, b, lemma 18

21.

21. ∆, ∆′ ` [U′/X′]U <: [[U′/X′]U/X]Bu by 20, 4

22.

22. ∆, ∆′ ` [U′/X′][U/X]Bl <: [U′/X′]U by 19, 7, 8, b, lemma 18

23.

23. ∆, ∆′ ` [[U′/X′]U/X]Bl <: [U′/X′]U by 22, 4

24.

24. fv([U′/X′]U) ⊆ dom(∆, ∆′) by 9, 14

25.

25. let T = [U′/X′]U

26.

26. done by 25, 17, 21, 23, 24

Case 3. (XS-Env)

1.

1. R = N

2.

2. R′ = [U/X]N

}
by def XS-Env

3.

3. ∆, ∆′ ` U <: [U/X]Bu

4.

4. ∆, ∆′ ` [U/X]Bl <: U

5.

5. dom(∆′) ∩ fv(∃X→[Bl Bu].N) = ∅

6.

6. fv(U) ⊆ dom(∆, ∆′)





by premises XS-Env

7.

7. ` N @@: N by SC-Reflex

8.

8. ` [U/X]N @@: [U/X]N by 7, lemma 1

9.

9. ` N′ @@: [U/X]N by 8, 2

10.

10. let T = U

11.

11. done by 10, 9, 3, 4, 6
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Case 4. (XS-Sub-Class)

1.

1. ∆′ = X→[Bl Bu]

2.

2. R′ = C<U>

3.

3. R = [U/Y]N
′′



 by def XS-Sub-Class

4.

4. class C<Y...>¢ N′′... by premise XS-Sub-Class

5.

5. ` C<U> @@: [U/Y]N
′′

by 4, SC-Sub-Class

6.

6. ` R′ @@: R by 5, 2, 3

7.

7. let T = X

8.

8. done by 6, 7, S-Bound, 1

Case 5. (XS-Bottom)

N/A

Lemma 36. (Subclassing preserves matching (receiver))

If:
a. ∆ ` ∃∆1.N1 @: ∃∆2.N2

b. mType(m, N2) = <Y2 →[B2l B2u]>U2→U2

c. mType(m, N1) = <Y1 →[B1l B1u]>U1→U1

d. match(sift(R, U2, Y2), P, Y2, T)
e. ∅ ` ∆ ok
f. ∆, ∆′ ` T ok

then:
match(sift(R, U1, Y1), P, Y1, T)

1.

1. ` N1 @@: [T′/X]N2

2.

2. ∆2 = X→[Bl Bu]

3.

3. ∆, ∆1 ` T′ <: [T′/X]Bu

4.

4. ∆, ∆1 ` [T′/X]Bl <: T′





by a, e, lemma 35

5.

5. assume wlog X ∩ Y2 = ∅

6.

6. assume wlog fv(T′) ∩ Y2 = ∅
}

by b

7.

7. mType(m, [T′/X]N2) = by b, lemma 6
[T′/X]<Y2 →[B2l B2u]>U2→U2

8.

8. mType(m, N1) = [T′/X]<Y2 →[B2l B2u]>U2→U2 by 1, 7, lemma 24

9.

9. Y1 = Y2 by 8

10.

10. U1 = [T′/X]U2 by 8

11.

11. let sift(R, U2, Y2) = (R′′, ∃∆.R′) by d, def sift

12.

12. ∀i where Pi 6= ? : Ti = Pi

13.

13. ∀j where Pj = ? : Y2j ∈ fv(R′)

14.

14. ` R′′ @@: [T/Y2,T′′/Z]R′

15.

15. dom(∆) = Z

16.

16. fv(T2, T′′) ∩ Y2, Z = ∅





by premises of match, d, 11
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17.

17. ` [T′/X]R′′ @@: [T′/X][T/Y2,T′′/Z]R′ by 14, lemma 1

18.

18. X ∩ fv(R′′) = ∅ by Barendregt

19.

19. ` R′′ @@: [T′/X][T/Y2,T′′/Z]R′ by 17, 18

20.

20. Z ∩ fv(T′) = ∅ by 15, 11, Barendregt

21.

21. ` R′′ @@: [[T′/X]T/Y2,[T′/X]T′′/Z][T′/X]R′ by 19, 6, 20

22.

22. ∀j where Pj = ? : Y2j ∈ fv([T′/X]R′) by 13, 5

23.

23. fv([T′/X]T, [T′/X]T′′) ∩ Y2, Z = ∅ by 16,6,20

24.

24. match(R′′, [T′/X]∃∆.R′, P, Y2, [T′/X]T) by 12, 22, 21, 15, 23, def match

25.

25. sift(R, [T′/X]U2, Y2) = (R′′, [T′/X]∃∆.R′) by 11, 5, 6, lemma 3

26.

26. sift(R, U1, Y1) = (R′′, [T′/X]∃∆.R′) by 25, 9, 10

27.

27. match(sift(R, U1, Y1), P, Y1, [T′/X]T) by 24, 26, 9

28.

28. match(sift(R, U1, Y1), P, Y1, T) by 27, f, 2, Barendregt

Lemma 37. (Subclassing preserves matching (arguments))

If:

a. ∆ ` ∃∆1.R1 @: ∃∆2.R2

b. match(sift(R2, U, Y), P, Y, T)
c. fv(U) ∩ Z = ∅
d. ∆2 = Z→[Bl Bu]

e. ∅ ` ∆ ok

f. ∆ ` ∃∆1.R1 ok
g. ∆ ` P ok

then:

there exists U′

where:

match(sift(R1, U, Y), P, Y, [U
′/Z]T)

∆, ∆1 ` U′ <: [U′/Z]Bu

∆, ∆1 ` [U′/Z]Bl <: U′

` R1 @@: [U′/Z]R2

fv(U′) ⊆ ∆, ∆1

1.

1. let sift(R2, U, Y) = (R′2, ∃∆3.R3)

2.

2. R′1 and R′2 are subsequences of R1 and R2 respectively

3.

3. Take ∆′
1 and ∆′

2 to be the corresponding environments of R′1 and R′2

4.

4. sift(R1, U, Y) = (R′1, ∃∆3.R3)

5.

5. ∆ ` ∃∆′
1.R

′
1 @: ∃∆′

2.R
′
2

}
by 1, a, 2, 3, lemma 4

6.

6. there exists U′

7.

7. ` R1 @@: [U′/Z]R2

8.

8. ∆, ∆1 ` U′ <: [U′/Z]Bu

9.

9. ∆, ∆1 ` [U′/Z]Bl <: U′

10.

10. fv(U′) ⊆ dom(∆,∆1)





by a, e, lemma 35

11.

11. fv(∃∆3.R3) ∩ Z = ∅ by c, def sift

12.

12. fv(R3) ∩ Z = ∅ by 11, Barendregt
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13.

13. ∀i where Pi 6= ? : Ti = Pi

14.

14. ∀j where Pj = ? : Yj ∈ fv(R3)

15.

15. ` R′2 @@: [T/Y,T′/X]R3

16.

16. dom(∆3) = X

17.

17. fv(T, T′) ∩ Y, X = ∅





by b, 1, def match

18.

18. ` [U′/Z]R
′
2 @@: [U′/Z][T/Y,T′/X]R3 by 15, lemma 1

19.

19. ` R′1 @@: [U′/Z][T/Y,T′/X]R3 by 7, 18, SC-Trans

20.

20. ` R′1 @@: [[U′/Z]T/Y,[U′/Z]T′/X]R3 by 12, 19

21.

21. ∆, ∆1 ` R1 ok

22.

22. ∆ ` ∆1 ok

}
by f, def F-Exist

23.

23. ∅ ` ∆, ∆1 ok by 22, e, lemma 13

24.

24. ∆, ∆1 ` [U′/Z]R2 ok by 7, f, e, lemma 22

25.

25. fv(U′) ∩ X = ∅ by 16, Barendregt

26.

26. fv(U′) ∩ Y = ∅ by 10

27.

27. fv([U′/Z]T, [U′/Z]T′) ∩ Y, X = ∅ by 17, 25, 26

28.

28. ∀i where Pi 6= ? : [U′/Z]Ti = [U′/Z]Pi = Pi by 14, g, d, Barendregt

29.

29. match(R′1,∃∆3.R3, P, Y, [U′/Z]T) by 28, 14, 20, 16, 27, def match

30.

30. match(sift(R1, U, Y), P, Y, [U′/Z]T) by 29, 4

31.

31. done by 30, 8, 9, 7, 10

Lemma 38. (Method body is well typed)

If:
a. ∅ ` ∆ ok
b. ∆ ` C<T> ok
c. mType(m, C<T>) = <Y¢ Uu>U→ U

d. mBody(m, C<T>) = (x; e)
then:

∆, Y→[⊥ Uu]; x:U, this:∃∅.C<T> ` e : U | ∅

Proof is by induction on the derivation of mBody(m, C<T>) = (x; e)

Lemma 39. (mType defined gives mBody defined)

If:
a. mType(m, C<T>) defined

then:
mBody(m, C<T>) defined

Proof is by case analaysis on the defintion of mType(m, C<T>)

Lemma 40. (fType and fields related)

a. fType(f, C<T>) defined
b. fields(C) = f

then:
f ∈ f
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Proof is by induction on the derivation of fType(f, N)

Lemma 41. .
Theorem (Subject Reduction)

If:
a. ∅; ∅ ` e : T | ∅
b. e ; e′

then:
∅; ∅ ` e′ : T | ∅

Proof is by structural induction on the derivation of e ; e′ with a case analysis on the last
step:

Case 1. (R-Field)

1.

1. e = new C<T>(v).fi

2.

2. e′ = vi

}
by def R-Field

3.

3. fields(C) = f by premise of R-Field

4.

4. ∅ ` ∆′ ok

5.

5. ∅; ∅ ` new C<T>(v) : ∃∆′.N | ∅

6.

6. fType(f, N) = T′

7.

7. ∆′ ` T′ <: T





by 1, a, F-Env-Empty, lemma 32

8.

8. ∅ ` C<T> ok

9.

9. fType(f, C<T>) =U

10.

10. ∅; ∅ ` v : U | ∅

11.

11. ∅ ` ∃∅.C<T> <: ∃∆′.N





by 5, lemma 31

12.

12. ∅ ` ∃∅.C<T> @: ∃∆′.N by 11, F-Env-Empty, lemma 17

13.

13. let ∆′ = Z→[Bl Bu]

14.

14. There exists Ts

15.

15. ` C<T> @@: [Ts/Z]N

16.

16. ∅ ` Ts <: [Ts/Z]Bu

17.

17. ∅ ` [Ts/Z]Bl <: Ts

18.

18. fv(Ts) = ∅





by 12, F-Env-Empty, lemma 35

19.

19. ∅ ` T ok by a, F-Env-Empty, lemma 30

20.

20. Ui = fType(fi, [Ts/Z]N) by 15, 6, 9, lemma 23

21.

21. Ui = [Ts/Z]fType(fi, N) by 20, lemma 5

22.

22. Ui = [Ts/Z]T
′

by 21, 6

23.

23. ∅ ` [Ts/Z]T
′
<: [Ts/Z]T by 7, 13, 16, 17, 18, lemma 18

24.

24. ∅ ` Ui <: T by 23, 19, 22

25.

25. ∅; ∅ ` vi : T | ∅ by 10, 24, F-Env-Empty, 19, T-Subs

Case 2. (R-Invk)

1.

1. e = v.<P>(v)

2.

2. e′ = [T/Y, v/x, v/this]e0

}
by def R-Invk

3.

3. v = new C<T′>(v′)

4.

4. v = new N(v′′)

5.

5. mBody(m, C<T′>) = (x; e0)

6.

6. mType(m, C<T′>) = <Y¢ B>U → U

7.

7. match(sift(N, U, Y), P, Y, T)





by premises R-Invk
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8.

8. ∅ ` ∆′,∆ ok

9.

9. ∅; ∅ ` v : ∃∆′.N | ∅

10.

10. mType(m, N) = <Y′¢ B′>U′′ → U′′

11.

11. ∅; ∅ ` v : ∃∆.R | ∅

12.

12. match(sift(R, U′′, Y′), P, Y′, T′′)

13.

13. ∅ ` P ok

14.

14. ∆′,∆ ` T′′ <: [T′′/Y′]B
′

15.

15. ∆′,∆ ` ∃∅.R <: [T′′/Y′]U
′′

16.

16. ∆′,∆ ` [T′′/Y′]U
′′

<: T





by 1, a, F-Env-Empty, lemma 33

17.

17. ∅ ` ∃∆′.N ok by 9, F-Env-Empty, lemma 30

18.

18. ∅ ` C<T′> ok

19.

19. fields(C) = f

20.

20. fType(f, C<T′>) =U′

21.

21. ∅; ∅ ` v′ : U′ | ∅

22.

22. ∅ ` ∃∅.C<T′> <: ∃∆′.N





by 9, 3, F-Env-Empty, lemma 31

23.

23. ∅ ` ∃∅.C<T′> @: ∃∆′.N by 22, F-Env-Empty, lemma 17

24.

24. ∅ ` N ok

25.

25. fields(N) = f

26.

26. fType(f, C<T′>) =Uf

27.

27. ∅ ` v′′ : Uf | ∅

28.

28. ∅ ` ∃∅.N <: ∃∆.R





by 11, 4, F-Env-Empty, lemma 31

29.

29. ∅ ` T ok by a, F-Env-Empty, lemma 30

30.

30. ∅ ` ∃∆.R ok by 11, F-Env-Empty, lemma 30

31.

31. ∆ ` R ok by 30, def F-Exists

32.

32. ∆ ` T′′ ok by 13, 12, 30, F-Env-Empty

33.

33. match(sift(R, U, Y′), P, Y′, T′′) by 23, 10, 6, 12,
F-Env-Empty, 32, lemma 36

34.

34. there exists Nfresh : R = Nfresh by 30, def F-Var

35.

35. ∅ ` ∃∅.N @: ∃∆.R by 28, 34, F-Env-Empty, lemma 17

36.

36. let ∆′ = Xx →[Bxl Bxu]

37.

37. There exists Ux

38.

38. ` C<T′> @@: [Ux/Xx]N

39.

39. ∅ ` Ux <: [Ux/Xx]Bxu

40.

40. ∅ ` [Ux/Xx]Bxl <: Ux

41.

41. fv(Ux) = ∅





by 23, 36, F-Env-Empty, lemma 35

42.

42. mType(m, [Ux/Xx]N) = [Ux/Xx]<Y′¢ B′>U′′→ U′′by 10, lemma 6

43.

43. mType(m, C<T′>) = [Ux/Xx]<Y′¢ B′>U′′→ U′′ by 38, 42, lemma 24

44.

44. <Y¢ B>U → U = [Ux/Xx]<Y′¢ B′>U′′→ U′′ by 43, 6

45.

45. Y = Y′

46.

46. U = [Ux/Xx]U′′

47.

47. U = [Ux/Xx]U′′

48.

48. B = [Ux/Xx]B′





by 44

49.

49. match(sift(R, U, Y), P, Y, T′′) by 33, 45

50.

50. Y→[⊥ B] ` U ok by 6, F-Env-Empty, 18, lemma 28

51.

51. let ∆ = Xs →[Bsl Bsu]

52.

52. ∅ ` ∃∅.N ok by 24, F-Env-Empty, F-Exists

53.

53. There exists Us

54.

54. T = [Us/Xs]T
′′

55.

55. ∅ ` Us <: [Us/Xs]Bsu

56.

56. ∅ ` [Us/Xs]Bsl <: Us

57.

57. ` N @@: [Us/Xs]R

58.

58. fv(Us) = ∅





by 35, 49, 7, 50, 51,
F-Env-Empty, 52, 13, lemma 37
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59.

59. ∆′, Y′ →[⊥ B′] ` U′′ ok

60.

60. ∆′, Y′ →[⊥ B′] ` U′′ ok

61.

61. ∆′, Y′ →[⊥ B′] ` B′ ok





by 10, 17, F-Env-Empty, lemma 28

62.

62. ∆′ ` [Us/Xs]T′′ <: [Us/Xs][T′′/Y′]B
′

by 14, 55, 56, 58, lemma 18

63.

63. ∆′ ` [Us/Xs]T′′ <: [[Us/Xs]T′′/Y′]B
′

by 62, 61

64.

64. ∆′ ` T <: [T/Y]B
′

by 63, 54, 45

65.

65. ∅ ` [Ux/Xx]T <: [Ux/Xx][T/Y]B
′

by 64, 39, 40, 41, lemma 18

66.

66. ∅ ` T <: [T/Y][Ux/Xx]B
′

by 65, 29, 6, 36, lemma 15

67.

67. ∅ ` T <: [T/Y]B by 66, 48

68.

68. ∆′ ` ∃∅.[Us/Xs]R <: [Us/Xs][T′′/Y′]U
′′

by 15, 55, 56, 58, lemma 18

69.

69. ∆′ ` ∃∅.[Us/Xs]R <: [[Us/Xs]T′′/Y′]U
′′

by 63, 60

70.

70. ∆′ ` ∃∅.[Us/Xs]R <: [T/Y]U
′′

by 69, 54, 45

71.

71. ∅ ` ∃∅.[Ux/Xx][Us/Xs]R <: [Ux/Xx][T/Y]U
′′

by 70, 39, 40, 41, lemma 18

72.

72. ∅ ` ∃∅.[Ux/Xx][Us/Xs]R <: [T/Y][Ux/Xx]U
′′

by 71, 29, 6, 36, lemma 15

73.

73. ∅ ` ∃∅.[Ux/Xx][Us/Xs]R <: [T/Y]U by 72, 46

74.

74. ∅ ` ∃∅.N @: ∃∅.[Us/Xs]R by 57, lemma 34

75.

75. ∅ ` ∃∅.[Ux/Xx]N @: ∃∅.[Ux/Xx][Us/Xs]R by 74, 39, 40, 41, lemma 18

76.

76. ∅ ` ∃∅.[Ux/Xx]N <: [T/Y]U by 73, 75, XS-Trans, S-SC

77.

77. ∅ ` ∃∅.N <: [T/Y]U by 76, 24

78.

78. ∆′ ` [Us/Xs][T′′/Y′]U
′′

<: [Us/Xs]T by 16, 55, 56, 58, lemma 18

79.

79. ∆′ ` [Us/Xs][T′′/Y′]U
′′

<: T by 78, 29

80.

80. ∆′ ` [[Us/Xs]T′′/Y′]U
′′

<: T by 79, 59

81.

81. ∆′ ` [T/Y]U
′′

<: T by 80, 54, 45

82.

82. ∅ ` [Ux/Xx][T/Y]U
′′

<: [Ux/Xx]T by 81, 39, 40, 41, lemma 18

83.

83. ∅ ` [Ux/Xx][T/Y]U
′′

<: T by 82, 29

84.

84. ∅ ` [T/Y][Ux/Xx]U
′′

<: T by 83, 29, 6, 36, lemma 15

85.

85. ∅ ` [T/Y]U <: T by 84, 47

86.

86. Y→[⊥ B]; x:U, this:C<T′> ` e0 : U | ∅ by F-Env-Empty, 18, 5, 6, lemma 38

87.

87. ∅ ` T ok by 13, 52, F-Exist,
F-Env-Empty, 7, lemma 29

88.

88. ∅; x:[T/Y]U, this:[T/Y]C<T′> ` by 86, 67, XS-Bttm, F-Env-Empty

[T/Y]e0 : [T/Y]U | ∅ 87, lemma 21

89.

89. ∅; x:[T/Y]U, this:C<T′> ` [T/Y]e0 : [T/Y]U | ∅ by 88, 18

90.

90. ∅; ∅ ` v : C<T′> | ∅ by 18, 19, 20, 21, T-New

91.

91. ∅; ∅ ` v : ∃∅.N | ∅ by 24, 25, 26, 27, T-New

92.

92. ∅ ` [T/Y]U ok by 50, 87, F-Env-Empty, XS-Bttm,
67, lemma 19

93.

93. ∅; ∅ ` [T/Y, v/x, v/this]e0 : [T/Y]U | ∅ by 89, 90, 91, 18,
92, 77, lemma 25

94.

94. ∅; ∅ ` [T/Y, v/x, v/this]e0 : T | ∅ by 93, 85, F-Env-Empty, T-Subs

Case 3. (RC-Field)

1.

1. e = er.f

2.

2. e′ = e′r.f

}
by def RC-Field

3.

3. er ; e′r by premise RC-Field

4.

4. ∃∆n :

5.

5. ∅ ` ∆n ok

6.

6. ∅; ∅ ` er : ∃∆n.N | ∅

7.

7. ∆n ` fType(f, N) <: T





by 1, a, F-Env-Empty, lemma 32
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8.

8. ∅; ∅ ` e′r : ∃∆n.N | ∅ by 3, 6, ind hyp

9.

9. ∅; ∅ ` e′r.f : fType(f, N) |∆n by 8, T-Field

10.

10. ∅ ` T ok by a, c, lemma 30

11.

11. ∅; ∅ ` e′r.f : T | ∅ by 9, 7, 5, 10, T-Subs

12.

12. done by 11, 2

Case 4. (RC-New-Arg)

1.

1. e = new C<T>(e)

2.

2. e′ = new C<T>(e′)

3.

3. e = ...ei...

4.

4. e′ = ...e′i...





by def RC-New-Arg

5.

5. ei ; e′i by premise RC-New-Arg

6.

6. ∅ ` C<T> ok

7.

7. fields(C) = f

8.

8. fType(f, C<T>) =U

9.

9. ∅; ∅ ` e : U | ∅

10.

10. ∅ ` ∃∅.C<T> <: T





by 1, a, lemma 31

11.

11. ∅; ∅ ` e′i : ∃∆i.Ri | ∅ by 5, 9, ind hyp

12.

12. ∅; ∅ ` new C<T>(e′) : ∃∅.C<T> | ∅ by 6, 7, 8, 9, 11, T-New

13.

13. ∅ ` T ok by a, F-Env-Empty, lemma 30

14.

14. ∅; ∅ ` new C<T>(e′) : T | ∅ by 12, 10, F-Env-Empty, 13, T-Subs

15.

15. done by 14, 2

Case 5. (RC-Invk-Recv)

1.

1. e = er.<P>m(e)

2.

2. e′ = e′r.<P>m(e)

}
by def RC-Invk-Recv

3.

3. er ; e′r by premise RC-Invk-Recv

4.

4. ∆n = ∆′′,∆

5.

5. ∅ ` ∆n ok

6.

6. ∅; ∅ ` er : ∃∆′′.N | ∅

7.

7. mType(m, N) = <Y¢ B>U→ U

8.

8. ∅; ∅ ` e : ∃∆.R | ∅

9.

9. match(sift(R, U, Y), P, Y, T)

10.

10. ∅ ` P ok

11.

11. ∆′′, ∆ ` T <: [T/Y]B

12.

12. ∆′′, ∆ ` ∃∅.R <: [T/Y]U

13.

13. ∆′′, ∆n ` [T/Y]U <: T





by 1, a, F-Env-Empty, lemma 33

14.

14. ∅; ∅ ` e′r : ∃∆′′.N | ∅ by 3, 6, ind hyp

15.

15. ∅; ∅ ` e′r.<P>m(e) : [T/Y]U |∆′′, ∆ by 14, 7, 8, 9, 10, 11, 12, T-Invk

16.

16. ∅ ` T ok by a, F-Env-Empty, lemma 30

17.

17. ∅; ∅ ` e′r.<P>m(e) : T | ∅ by 15, 13, 4, 5, 16, T-Subs

18.

18. done by 17, 2

Case 6. (RC-Invk-Arg)

1.

1. e = er.<P>m(e)

2.

2. e′ = er.<P>m(e′)

3.

3. e = ...ei...

4.

4. e′ = ...e′i...





by def RC-Invk-Arg

5.

5. ei ; e′i by premise RC-Invk-Arg
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6.

6. ∆n = ∆′′,∆

7.

7. ∅ ` ∆n ok

8.

8. ∅; ∅ ` er : ∃∆′′.N | ∅

9.

9. mType(m, N) = <Y¢ B>U→ U

10.

10. ∅; ∅ ` e : ∃∆.R | ∅

11.

11. match(sift(R, U, Y), P, Y, T)

12.

12. ∅ ` P ok

13.

13. ∆, ∆′′, ∆ ` T <: [T/Y]B

14.

14. ∆, ∆′′, ∆ ` ∃∅.R <: [T/Y]U

15.

15. ∆′′, ∆ ` [T/Y]U <: T





by 1, a, F-Env-Empty, lemma 33

16.

16. ∅; ∅ ` e′i : ∃∆i.Ri | ∅ by 5, 10, ind hyp

17.

17. ∅; ∅ ` er.<P>m(e′) : [T/Y]U |∆′′,∆ by 8, 9, 10, 16, 11, 12, 13, 14, T-Invk

18.

18. ∅ ` T ok by a, F-Env-Empty, lemma 30

19.

19. ∅; ∅ ` er.<P>m(e′) : T | ∅ by 17, 15, 6, 7, 18, T-Subs

20.

20. done by 19, 2

Lemma 42. .
Theorem (Progress)

If:
a. ∅; ∅ ` e : T |∆

then:
e ; e′

or:
there exists v such that e = v

Proof is by structural induction on the derivation of ∅; ∅ ` e : T |∆ with a case analysis on the
last step:

Case 1. (T-Var)

1.

1. T = Γ(x) by def T-Var

2.

2. Γ = ∅ by a

3.

3. case N/A by contradiction, 1, 2

Case 2. (T-New)

1.

1. e = new N(e) by def T-New

2.

2. ∅; ∅ ` e : U | ∅ by premise of T-New

3.

3. ∀ei ∈ e : there exists vi with ei = vi or there exists ei ∈ e with ei ; e′i
2, ind hyp

Case analysis on e:

Case 1. ∀ei ∈ e : ∃vi.ei = vi

1.

1.1. e = new N(v) by 1

2.

1.2. done by 1.1

Case 2. ∃ei ∈ e : ei ; e′i
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1.

2.1. done by RC-New

Case 3. (T-Field)

1.

1. e = er.f by def T-Field

2.

2. ∅; ∅ ` er : ∃∆.N | ∅

3.

3. fType(f, N) = T

}
by premises T-Field

4.

4. er ; e′r or there exists vr with er = vr by 2, ind hyp

Case analysis on er:

Case 1. er ; e′r

1.

1.1. done by RC-Field

Case 2. there exists vr where er = vr

1.

2.1. let vr = new C<T>(v).f

2.

2.2. fields(C) = f

3.

2.3. ∅ ` ∃∅.C<T> <: ∃∆.N

}
by 2, 2.1, lemma 31

4.

2.4. ∅ ` ∃∅.C<T> @: ∃∆.N by 2.3, F-Env-Empty, lemma 17

5.

2.5. there exists U

6.

2.6. dom(∆) = Z

7.

2.7. ` C<T> @@: [U/Z]N



 by 2.4, F-Env-Empty, lemma 35

8.

2.8. fType(f, [U/Z]N) = [U/Z]T by 3, lemma 5

9.

2.9. fType(f, C<T>) = [U/Z]T by 2.8, 2.7, lemma 23

10.

2.10. f ∈ f by 2.2, 2.9, lemma 40

11.

2.11. done by 2.1, 2.2, 2.10, RC-Field

Case 4. (T-Subs)

1.

1. ∅; ∅ ` e : U |∆′ by premise of T-Subs

2.

2. done by 1, ind hyp

Case 5. (T-Invk)

1.

1. e = er.<P>m(e) by def T-Invk

2.

2. ∅; ∅ ` er : ∃∆′.N | ∅

3.

3. ∅; ∅ ` e : ∃∆.R | ∅

4.

4. mType(m, N) = <Y¢ Tu>U→U

5.

5. match(sift(R, U, Y), P, Y, T)

6.

6. ∅ ` P ok





by premises T-Invk

7.

7. er ; e′r or (there exists vr with er = vr) by 2, ind hyp

8.

8. ∀ei ∈ e : (there exists vi with ei = vi) or (there exists ei ∈ e : ei ; e′i)
3, ind hyp

9.

9. ∅ ` ∃∆′.N ok by 2, F-Env-Empty, lemma 30
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Case analysis on er, e:

Case 1. er ; e′r

1.

1.1. done by RC-Inv-Recv

Case 2. there exists ei ∈ e where ei ; e′i

1.

2.1. done by RC-Inv-Arg

Case 3. there exists vr where er = vr and ∀ei ∈ e : ∃vi where ei = vi

1.

3.1. let vr = new N′(v′)

2.

3.2. let vr = new N′(v′′)

3.

3.3. ∅ ` N′ ok

4.

3.4. ∅ ` ∃∅.N′ <: ∃∆′.N

}
by 3.1, 2, lemma 31

5.

3.5. ∅ ` ∃∅.N′ @: ∃∆′.N by 3.4, F-Env-Empty, lemma 17

6.

3.6. let ∆′ = Z→[Bl Bu]

7.

3.7. ` N′ @@: [U′/Z]N

8.

3.8. ∅ ` U′ <: [U′/Z]Bu

9.

3.9. ∅ ` [U′/Z]Bl <: U′

10.

3.10. fv(U′) ⊆ dom(∆)





by 3.5, 3.6, lemma 35

11.

3.11. mType(m, [U′/Z]N) = [U′/Z]<Y¢ Tu>U→U by 4, lemma 6

12.

3.12. mType(m, N′) = [U′/Z]<Y¢ Tu>U→U by 3.11, 3.7, lemma 24

13.

3.13. mBody(m, N′) defined by 3.12, lemma 39

14.

3.14. ∅ ` ∃∆.R ok by 3, F-Env-Empty, lemma 30

15.

3.15. ∆ ` T ok by 6, 3.14, F-Env-Empty, 5, lemma 29

16.

3.16. match(sift(R, [U′/Z]U, Y), P, Y, T) by 5, 3.12, 4, 3.5,
F-Env-Empty, 3.15, lemma 36

17.

3.17. ∅ ` N′ ok

18.

3.18. ∅ ` ∃∅.N′ <: ∃∆.R

}
by 3.2, 3, lemma 31

19.

3.19. ∃Nfresh such that R = Nfresh by 3.14

20.

3.20. ∅ ` ∃∅.N′ @: ∃∆.R by 3.18, 3.19,
F-Env-Empty, lemma 17

21.

3.21. ∅ ` ∃∅.N′ ok by 3.17, F-Env-Empty, F-Exists

22.

3.22. let Xs →[Bsl Bsu] = ∆

23.

3.23. wlog assume Xs are fresh by 3.22, Barendregt

24.

3.24. match(sift(N′, [U′/Z]U, Y), P, Y, [Us/Xs]T)

25.

3.25. ∅ ` Us <: [Us/Xs]Bu

26.

3.26. ∅ ` [Us/Xs]Bl <: Us

27.

3.27. ` N′ @@: [Us/Xs]R





by 3.20, 3.16, 3.23, 3.22,
F-Env-Empty, 3.21, 6, lemma 37

28.

3.28. done by 3.12, 3.13, 3.24, R-Invk



Appendix B

Proofs of properties of Jo∃

In this appendix we list all lemmas, and the interesting proofs, used in the proof of soundness
and owners-as-dominators for Jo∃ and Jo∃deep. As in the proofs for Tame FJ, we require that
the program is well-formed in all lemmas, i.e., for all class declarations, Q, in the program,
` Q ok. Throughout, we assume the Barendregt convention, i.e., bound and free variables are
distinct.

We use fv to find the free variables of an expression or type. Where we need to be precise
we use fvγ, fvo, fvX to find the free expression variables, owner variables, and type variables,
respectively. Otherwise, we use just fv where it is clear from the context what kind of free
variables we are concerned with.

Lemmas and proof steps that only apply to Jo∃deep and are used only in the proof of owners-
as-dominators are marked in grey ; those parts that only apply in Jo∃ without owners-as-

dominators are highlighted using a box .

Full proofs of all lemmas can be downloaded from:

http://www.doc.ic.ac.uk/˜ncameron/papers/cameron joexists proofs.pdf

B.1 Outline of proofs

As in the proofs for Tame FJ, the lemmas in the next section are sequenced so that they
only use earlier lemmas. Lemmas 1–2, 4–12, 32, and 52–59 are “common sense” lemmas
about the system, including weakening and inversion lemmas. Lemmas 3 and 31 show which
entities have existential and non-existential type. Lemmas 13–30, 33–41, and 43 are substitution
lemmas for three varieties of substitution. These constitute the bulk of work in the proofs, but
are fairly tedious (but fiddly) to prove. Lemmas 42, 44–49, and 58 concern well-formedness:
when it can be expected and properties of well-formed types; some follow easily from the
judgement rules, those concerning field and method types were surprisingly tricky due to the
substitutions involved. Lemma 50 relates method types to method bodies. Lemma 51 states
that reduction preserves relations that are judged using the heap. These two lemmas are
straightforward. Lemmas 60–65 are properties of ownership which are used only to prove the
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owners-as-dominators property. These are the most interesting lemmas to formulate and prove
and required some fiddling with the system to get the existential quantification aspects correct.

In general, these proofs are much more straightforward than those for Tame FJ. Subject reduc-
tion is proved by a standard case analysis on the reduction rules which require the supporting
lemmas. The owners-as-dominators property is proved by showing that reduction preserves this
property of the heap; this is done as part of the subject reduction proofs. The only interesting
case is field assignment where we must show that the new reference created by the assignment
satisfies the owners-as-dominators property. This is done by showing that the owner of the
object is outside the declared owner in the type of the field being assigned to. We also show
that the owner in the field’s type is outside the object that includes that field. By putting these
two relationships together with transitivity we have the owners-as-dominators property for the
updated reference.

B.2 Proofs

Lemma 1. (Reflexivity of subtyping)

If:
∆; Γ ` T <: T

Proof is by case analysis on the structure of T

Lemma 2. (Transitivity of Subtyping)

If:
a. ∆; Γ ` T1 <: T2

b. ∆; Γ ` T2 <: T3

then:
∆; Γ ` T1 <: T3

Proof is by case analysis on the last step of each derivation of ∆; Γ ` T1 <: T2 and ∆; Γ ` T2 <:
T3

Lemma 3. (Subtyping preserves non-existential type)

If:
a. ∆; Γ ` T <: M

then:
T = M

and if:
b. ∆; Γ ` M <: T

then:
T = M
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Proof is by case analysis on the last step of the derivation of ∆; Γ ` T <: M or ∆; Γ ` M <: T:

Lemma 4. (Weakening of well-formed owners)

If:
a. ∆, ∆′; Γ, Γ′ ` b ok
b. dom(∆, ∆′) ∩ dom(∆′′) = ∅
c. dom(Γ, Γ′) ∩ dom(Γ′′) = ∅

then:
∆, ∆′′, ∆′; Γ, Γ′′, Γ′ ` b ok

Proof is by case analysis on ∆, ∆′; Γ, Γ′ ` b ok

Lemma 5. ( Weakening of own )

If:
a. ownΨ,Ψ′(T) = b

b. dom(Ψ, Ψ′) ∩ dom(Ψ′′) = ∅
then:

ownΨ,Ψ′′,Ψ′(T) = b

Proof is by case analysis on T

Lemma 6. (Weakening of the inside relation for owners)

If:
a. ∆, ∆′; Γ, Γ′ ` b1 ¹ b2

b. dom(∆, ∆′) ∩ dom(∆′′) = ∅
c. dom(Γ, Γ′) ∩ dom(Γ′′) = ∅

then:
∆, ∆′′, ∆′; Γ, Γ′′, Γ′ ` b1 ¹ b2

Proof is by structural induction on the derivation of ∆, ∆′; Γ, Γ′ ` b1 ¹ b2

Lemma 7. (Weakening of the inside relation for environments)

If:
a. ∆, ∆′; Γ, Γ′ ` ∆1 ¹ ∆2

b. dom(∆, ∆′, ∆1, ∆2) ∩ dom(∆′′) = ∅
c. dom(Γ, Γ′) ∩ dom(Γ′′) = ∅

then:
∆, ∆′′, ∆′; Γ, Γ′′, Γ′ ` ∆1 ¹ ∆2

Proof is by deduction

Lemma 8. (Weakening of subtyping)
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If:
a. ∆, ∆′; Γ, Γ′ ` T <: T′

b. dom(∆, ∆′) ∩ dom(∆′′) = ∅
c. dom(Γ, Γ′) ∩ dom(Γ′′) = ∅

then:
∆, ∆′′, ∆′; Γ, Γ′′, Γ′ ` T <: T′

Proof is by case analysis on the last step of the derivation of ∆, ∆′; Γ, Γ′ ` T <: T′

Lemma 9. (Weakening of well-formed types and environments)

If:
a. Ψ, Ψ′; ∆, ∆′; Γ, Γ′ ` ψ ok
b. dom(∆, ∆′) ∩ dom(∆′′) = ∅
c. dom(Γ, Γ′) ∩ dom(Γ′′) = ∅
d. dom(Ψ, Ψ′) ∩ dom(Ψ′′) = ∅

and if:
e. ψ = ∆′′′ then dom(∆, ∆′, ∆p) ∩ dom(∆′′) = ∅

then:
Ψ, Ψ′′, Ψ′; ∆, ∆′′, ∆′; Γ, Γ′′, Γ′ ` ψ ok

where:
ψ ::= ∆p | T

Proof is by structural induction on the derivation of Ψ, Ψ′; ∆, ∆′; Γ, Γ′ ` ψ ok

Lemma 10. (Weakening of Typing)

If:
a. Ψ, Ψ′; ∆, ∆′; Γ, Γ′ ` e : T
b. dom(∆, ∆′) ∩ dom(∆′′) = ∅
c. dom(Γ, Γ′) ∩ dom(Γ′′) = ∅
d. dom(Ψ, Ψ′) ∩ dom(Ψ′′) = ∅

then:
Ψ, Ψ′′, Ψ′; ∆, ∆′′, ∆′; Γ, Γ′′, Γ′ ` e : T

Proof is by structural induction on the derivation of Ψ, Ψ′; ∆, ∆′; Γ, Γ′ ` e : T

Lemma 11. (Weakening of well-formed heaps)

If:
a. ∆, ∆′ ` H ok
b. dom(∆, ∆′) ∩ dom(∆′′) = ∅

then:
∆, ∆′′, ∆′ ` H ok

Proof is by deduction
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Lemma 12. (Inversion of subtyping)

If:

a. ∆; Γ ` ∃o→[bl bu].N <: ∃o′ →[b′l b′u].N
′

then:

o = o′

N = N′

∆; Γ ` o→[bl bu] ¹ o′ →[b′l b′u]

Proof is by case analysis on the last step of the derivation of ∆; Γ ` ∃o→[bl bu].N <:
∃o′ →[b′l b′u].N

′

Lemma 13. (Type substitution preserves well-formed owners)

If:
a. ∆; Γ1, Γ2 ` b ok
b. X 6∈ fv(Γ1)

then:
∆; Γ1, [U/X]Γ2 ` b ok

Proof is by case analysis on ∆; Γ1, Γ2 ` b ok

Lemma 14. (Type substitution preserves the inside relation)

If:
a. ∆; Γ1, Γ2 ` b ¹ b′

b. X 6∈ fv(Γ1)
then:

∆; Γ1, [U/X]Γ2 ` b ¹ b′

Proof is by structural induction on the derivation of ∆; Γ1, Γ2 ` b ¹ b′

Lemma 15. (Type substitution preserves subtyping)

If:
a. ∆; Γ1, Γ2 ` T <: T′

b. X 6∈ fv(Γ1)
then:

∆; Γ1, [U/X]Γ2 ` [U/X]T <: [U/X]T′

Proof is by case analysis on the last step of the derivation of ∆; Γ1, Γ2 ` T <: T′

Lemma 16. (Type substitution preserves well-formed environments)

If:
a. ∆; Γ1, Γ2 ` ∆′ ok
b. X 6∈ fv(Γ1)

then:
∆; Γ1, [U/X]Γ2 ` ∆′ ok
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Proof is by structural induction on the derivation of ∆; Γ1, Γ2 ` ∆′ ok

Lemma 17. (Type substitution preserves well-formed types)

If:
a. Ψ1, X→[bl ©], Ψ2; ∆; Γ1, Γ2 ` T ok
b. Ψ1; ∆; Γ1 ` U ok
c. X 6∈ fv(Γ1)
d. ∆; Γ1 ` bl ¹ ownΨ1(U)

then:
∆; Γ1, [U/X]Γ2 ` [U/X]T ok

Proof is by structural induction on the derivation of Ψ1, X→[bl bu], Ψ2; ∆; Γ1, Γ2 ` T ok

Lemma 18. (Substitution of types preserves field lookup)

If:
a. fType(f, γ, C<a, T>) = T

then:
fType(f, γ, [T′/X′]C<a, T>) = [T′/X′]T

Proof is by deduction

Lemma 19. (Substitution of types preserves method lookup)

If:

a. mType∆;Γ1,Γ2(m<a
′, T′>, γ, C<a, T′′>) = T→T

b. Ψ1; ∆; Γ1 ` U ok
c. X 6∈ fv(Γ1)

then:

mType∆;Γ1,[U/X]Γ2([U
′/Y′]m<a′, T′>, γ, [U′/Y′]C<a, T>) = [U′/Y′](U→U)

Proof is by deduction

Lemma 20. (Type substitution preserves typing)

If:
a. Ψ1, X→[bl ©], Ψ2; ∆; Γ1, Γ2 ` e : T
b. Ψ1; ∆; Γ1 ` U ok
c. X 6∈ fv(Γ1)
d. ∆; Γ1 ` bl ¹ ownΨ1(U)

then:
Ψ1, Ψ2; ∆; Γ1, [U/X]Γ2 ` [U/X]e : [U/X]T

Proof is by structural induction on the derivation of Ψ1, X→[bl ©], Ψ2; ∆; Γ1, Γ2 ` e : T

Lemma 21. (Owner substitution preserves well-formed owners)
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If:
a. ∆1, o→[bl bu], ∆2; Γ1, Γ2 ` b ok
b. ∆1; Γ1 ` a ok
c. ∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` a ¹ [a/o]bu

d. ∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` [a/o]bl ¹ a

e. o 6∈ fv(∆1)
f. o 6∈ fv(Γ1)

then:
∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` [a/o]b ok

Proof is by case analysis on ∆1, o→[bl bu], ∆2; Γ1, Γ2 ` b ok

Lemma 22. (Owner substitution preserves the inside relation)

If:
a. ∆1, o→[bl bu], ∆2; Γ1, Γ2 ` b1 ¹ b2

b. ∆1; Γ1 ` a ok
c. ∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` a ¹ [a/o]bu

d. ∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` [a/o]bl ¹ a

e. o 6∈ fv(∆1)
f. o 6∈ fv(Γ1)

then:
∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` [a/o]b1 ¹ [a/o]b2

Proof is by structural induction on the derivation of ∆1, o→[bl bu], ∆2; Γ1, Γ2 ` b1 ¹ b2

Lemma 23. (Corrollary to lemma 22)

If:

a. ∆1, o→[bl bu], ∆2; Γ1, Γ2 ` o→[bl bu] ¹ o→[b′l b′u]
b. ∆1; Γ1 ` a ok
c. ∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` a ¹ [a/o]bu

d. ∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` [a/o]bl ¹ a

e. o 6∈ fv(∆1)
f. o 6∈ fv(Γ1)

then:

∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` [a/o](o→[bl bu]) ¹ [a/o](o→[b′l b′u])

Proof is by deduction

Lemma 24. (Owner substitution preserves subtyping)

If:
a. ∆1, o→[bl bu], ∆2; Γ1, Γ2 ` T1 <: T2

b. ∆1; Γ1 ` a ok
c. ∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` a ¹ [a/o]bu

d. ∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` [a/o]bl ¹ a
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e. o 6∈ fv(∆1)
f. o 6∈ fv(Γ1)

then:
∆1, [a/o]∆2; Γ, [a/o]Γ2 ` [a/o]T1 <: [a/o]T2

Proof is by case analysis on the last step of the derivation of ∆1, o→[bl bu], ∆2; Γ1, Γ2 ` T1 <:
T2

Lemma 25. ( Owner substitution preserves glb )

If:
a. glb∆T

(b) = b′

b. ∆; Γ ` a ok
c. dom(∆) ∩ dom(∆T ) = emptyset

then:
[a/o]b′ = glb[a/o]∆T

([a/o]b)

Proof is by structural induction on the derivation of glb∆T
(b)

Lemma 26. ( Owner substitution preserves own )

If:
a. ownΨ,Ψ′(T) = b

b. o 6∈ fv(Ψ)
c. ∆1; Γ1 ` a ok

then:
ownΨ,[a/o]Ψ′([a/o]T) = [a/o]b

Proof is by case analysis on T

Lemma 27. (Owner substitution preserves well formedness)

If:
a. Ψ1, Ψ2; ∆1, o→[bl bu], ∆2; Γ1, Γ2 ` ψ ok
b. ∆1; Γ1 ` a ok
c. ∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` a ¹ [a/o]bu

d. ∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` [a/o]bl ¹ a

e. o 6∈ fv(∆1)
f. o 6∈ fv(Γ1)
g. o 6∈ fv(Ψ1)

where:
h. ψ ::= ∆ | T

then:
Ψ1, [a/o]Ψ2; ∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` [a/o]ψ ok

Proof is by structural induction on the derivation of Ψ1, Ψ2; ∆1, o→[bl bu], ∆2; Γ1, Γ2 ` ψ ok
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Lemma 28. (Substitution of owners preserves field lookup)

If:
a. fType(f, γ, C<a, T>) = T

then:
fType(f, γ, [a′/o′]C<a, T>) = [a′/o′]T

Proof is by deduction

Lemma 29. (Substitution of owners preserves method lookup)

If:

a. mType∆1,o→[bl bu],∆2;Γ1,Γ2(m<a
′, T′>, γ, C<a, T>) = T→T

b. ∆1; Γ1 ` a′′ ok
c. ∆1, [a

′′/o′′]∆2; Γ1, [a
′′/o′′]Γ2 ` a′′ ¹ [a′′/o′′]bu

d. ∆1, [a
′′/o′′]∆2; Γ1, [a

′′/o′′]Γ2 ` [a′′/o′′]bl ¹ a′′

e. o 6∈ fv(∆1)
f. o 6∈ fv(Γ1)

then:

mType∆1,[a′′/o′′]∆2;Γ1,[a′′/o′′]Γ2
([a′′/o′′]m<a′, T′>, γ, [a′′/o′′]C<a, T>) = [a′′/o′′](U→U)

Proof is by deduction

Lemma 30. (Owner substitution preserves typing)

If:
a. Ψ1, Ψ2; ∆1, o→[bl bu], ∆2; Γ1, Γ2 ` e : T
b. ∆1; Γ1 ` a ok
c. ∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` a ¹ [a/o]bu

d. ∆1, [a/o]∆2; Γ1, [a/o]Γ2 ` [a/o]bl ¹ a

e. o 6∈ fv(∆1)
f. o 6∈ fv(Γ1)
g. o 6∈ fv(Ψ1)

then:
Ψ1, [a/o]Ψ2; ∆1, [r/o]∆2; Γ1, [r/o]Γ2 ` [r/o]e : [r/o]T

Proof is by structural induction on the derivation of Ψ1, Ψ2; ∆1, o→[bl bu], ∆2; Γ1, Γ2 ` e : T

Lemma 31. (Values with non-existential type are addresses)

If:
a. Ψ; ∆; Γ ` v : M

then:
v = ι

Proof is by structural induction on the derivation of Ψ; ∆; Γ ` v : M
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Lemma 32. (Inversion lemma, address)

If:
a. Ψ; ∆; Γ ` ι : T

then:
∆; Γ ` Γ(ι) <: T

Proof is by structural induction on the derivation of Ψ; ∆; Γ ` ι : T

Lemma 33. (Value substitution preserves well-formed owners)

If:
a. ∆, ∆′; Γ, x:U, Γ′ ` b ok
b. Ψ; ∆; Γ ` v : U′

c. ∆; Γ, x:U, Γ′ ` U′ <: U
d. x 6∈ fv(∆)

then:
∆, [v/x]∆′; Γ, [v/x]Γ′ ` [v/x]b ok

Proof is by case analysis on ∆, ∆′; Γ, x:U, Γ′ ` b ok

Lemma 34. (Value substitution preserves the inside relation)

If:
a. ∆, ∆′; Γ, x:U, Γ′ ` b1 ¹ b2

b. Ψ; ∆; Γ ` v : U′

c. ∆; Γ ` U′ <: U
d. x 6∈ fv(Γ)
e. x 6∈ fv(∆)

then:
∆, [v/x]∆′; Γ, [v/x]Γ′ ` [v/x]b1 ¹ [v/x]b2

Proof is by structural induction on the derivation of ∆, ∆′; Γ, x:U, Γ′ ` b1 ¹ b2

Lemma 35. (Corrollary to lemma 34)

If:

a. ∆, ∆′; Γ, x:U, Γ′ ` o→[bl bu] ¹ o→[b′l b′u]
b. Ψ; ∆; Γ ` v : U′

c. ∆; Γ ` U′ <: U
d. x 6∈ fv(Γ)
e. x 6∈ fv(∆)

then:

∆, [v/x]∆′; Γ, [v/x]Γ′ ` [v/x](o→[bl bu]) ¹ [v/x](o→[b′l b′u])

Proof is by deduction
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Lemma 36. (Value substitution preserves subtyping)

If:
a. ∆, ∆′; Γ, x:U, Γ′ ` T1 <: T2

b. Ψ; ∆; Γ ` v : U′

c. ∆; Γ ` U′ <: U
d. x 6∈ fv(Γ)
e. x 6∈ fv(∆)

then:
∆, [v/x]∆′; Γ, [v/x]Γ′ ` [v/x]T1 <: [v/x]T2

Proof is by case analysis on the last step of the derivation of ∆, ∆′; Γ, x:U, Γ′ ` T1 <: T2

Lemma 37. ( Value substitution preserves glb )

If:
a. glb∆(b) = b′

then:
[v/x]b′ = glb[v/x]∆([v/x]b)

Proof is by structural induction on the derivation of glb∆(b)

Lemma 38. ( Value substitution preserves own )

If:
a. ownΨ,Ψ′(T) = b

b. x 6∈ fv(Ψ)
then:

ownΨ,[v/x]Ψ′([v/x]T) = [v/x]b

Proof is by case analysis on T

Lemma 39. (Value substitution preserves well-formed types and environments)

If:
a. Ψ, Ψ′; ∆, ∆′; Γ, x:U, Γ′ ` ψ ok
b. Ψ; ∆; Γ ` v : U′

c. ∆; Γ ` U′ <: U
d. x 6∈ fv(Γ)
e. x 6∈ fv(∆)
f. x 6∈ fv(Ψ)

where:
g. ψ ::= ∆′′ | T

then:
Ψ, [v/x]Ψ′; ∆, [v/x]∆′; Γ, [v/x]Γ′ ` [v/x]ψ ok

Proof is by structural induction on the derivation of Ψ, Ψ′; ∆, ∆′; Γ, x:U, Γ′ ` ψ ok



B.2. Proofs 226

Lemma 40. (Substitution of values preserves field lookup)

If:
a. fType(fi, γ, C<a, T>) = T

then:
fType(fi, [v/x]γ, [v/x]C<a, T>) = [v/x]T

Proof is by deduction

Lemma 41. (Substitution of values preserves method lookup)

If:

a. mType∆,∆′;Γ,x:U,Γ′(m<a
′, U′>, γ, C<a, U>) = T→T

b. Ψ; ∆; Γ ` v : U′

c. ∆; Γ ` U′ <: U
d. Ψ; ∆ ` Γ ok
e. x 6∈ fv(∆)
f. x 6∈ fv(Ψ)

then:

mType∆,[v/x]∆′;Γ,[v/x]Γ′([v/x]m<a
′, U′>, [v/x]γ, [v/x]C<a, U>) = [v/x](T→T)

Proof is by deduction

Lemma 42. (Type Checking values gives well-formed types)

If:
a. Ψ; ∆; Γ ` v : T
b. Ψ; ∆ ` Γ ok

then:
Ψ; ∆; Γ ` T ok

Proof is by structural induction on the derivation of Ψ; ∆; Γ ` v : T

Lemma 43. (Substitution of values preserves typing)

If:
a. Ψ, Ψ′; ∆, ∆′; Γ, x:U, Γ′ ` e : T
b. Ψ; ∆; Γ ` v : U′

c. ∆; Γ ` U′ <: U
d. Ψ; ∆ ` Γ ok
e. x 6∈ fv(∆)
f. x 6∈ fv(Ψ)

then:
Ψ, [v/x]Ψ′; ∆, [v/x]∆′; Γ, [v/x]Γ′ ` [v/x]e : [v/x]T

Proof is by structural induction on the derivation of Ψ, Ψ′; ∆, ∆′; Γ, x:U, Γ′ ` e : T
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Lemma 44. ( The inside relation gives well-formed owners )

If:
a. ∆; Γ ` b ¹ b′

b. ∅; Γ ` ∆ ok
c. Ψ; ∆; ∅ ` Γ ok

then:
d. ∆; Γ ` b, b′ ok

or:
e. b = b′

Proof is by structural induction on the derivation of ∆; Γ ` b ¹ b′ with a case analysis on the
last step:

Case 1. (I-Reflex, I-Bottom, I-World)

trivial

Case 2. (I-Trans)

1.

1. ∆;Γ ` b ¹ b′′

2.

2. ∆;Γ ` b′′ ¹ b′

}
by premises I-Trans

3.

3. ∆;Γ ` b, b′′ ok

4.

4. or b = b′′

}
by 1, b, c, ind hyp

5.

5. ∆;Γ ` b′′, b′ ok

6.

6. or b′′ = b′

}
by 2, b, c, ind hyp

7.

7. done — d by 3, 5

8.

8. done — d by 4, 5

9.

9. done — d by 3, 6

10.

10. done — e by 4, 6

Case 3. (I-Bound (upper bound case))

1.

1. ∆(o) = [bl bu] by premise I-Bound

2.

2. b = o

3.

3. b′ = bu

}
by def I-Bound

4.

4. ∆;Γ ` b ok by 2, 1, F-Owner

5.

5. ∆;Γ ` b′ ok by 3, 1, b, def F-Env

Case 4. (I-Bound (lower bound case))

1.

1. ∆(o) = [bl bu] by premise I-Bound

2.

2. b′ = o

3.

3. b = bl

}
by def I-Bound

4.

4. ∆;Γ ` b′ ok by 2, 1, F-Owner

5.

5. ∆;Γ ` b ok by 3, 1, b, def F-Env

Case 5. (I-Owner)

1.

1. Γ(γ) = C<a, T> by premise I-Owner

2.

2. b = γ

3.

3. b′ = a0

}
by def I-Owner
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4.

4. ∆;Γ ` b ok by 2, 1, F-Var

5.

5. ∆;Γ ` b′ ok by 3, 1, c, def F-Gamma

Lemma 45. (fType gives well-formed types at runtime)

If:
a. fType(fi, ι, C<a, T>) = T

b. ∅; ∆;H ` C<a, T> ok
c. ∅; ∆;H ` ι : C<a, T>

d. ∅; ∅; ∅ ` ∆ ok
e. ∆ ` H ok

then:
∅; ∆;H ` T ok

Proof is by deduction

Lemma 46. (mType gives well-formed types at runtime)

If:

a. mType∆;H(m<a′, T′>, ι, C<a, T>) = U→U

b. ∅; ∆;H ` C<a, T> ok
c. ∅; ∆;H ` ι : C<a, T>

d. ∅, ∅ ` ∆ ok
e. ∆ ` H ok

f. ∅; ∆;H ` a′ ok

g. ∅; ∆;H ` T′ ok
then:

∅; ∆;H ` U ok

Proof is by deduction

Lemma 47. (Runtime type Checking gives well-formed types)

If:
a. ∅; ∆;H ` e : T
b. ∆ ` H ok
c. ∅; ∅;` ∆ ok

then:
∅; ∆;H ` T ok

Proof is by structural induction on the derivation of Ψ; ∆; Γ ` e : T

Lemma 48. (Well-formed types are closed)

If:
a. Ψ; ∆; Γ ` T ok

then:
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∀γ ∈ fvγ(T) : γ ∈ dom(Γ)
∀o ∈ fvo(T) : o ∈ dom(∆)
∀X ∈ fvX(T) : X ∈ dom(Ψ)

Proof is by structural induction on the derivation of Ψ; ∆; Γ ` T ok

Lemma 49. (Well-typed expressions are closed)

If:
a. Ψ; ∆; Γ ` e : T

then:
∀γ ∈ fvγ(e) : γ ∈ dom(Γ)
∀o ∈ fvo(e) : o ∈ dom(∆)
∀X ∈ fvX(e) : X ∈ dom(Ψ)

Proof is by structural induction on the derivation of Ψ; ∆; Γ ` e : T

Lemma 50. (A method body has the method’s return type)

If:
a. mBody(m<r, S>, ι, R) = (x; e)
b. mType∆;H(m<r, S>, ι, R) = T→T

c. ∆;H ` r ok
d. ∅; ∆;H ` S ok
e. ∅; ∆;H ` ι : R
f. ∆ ` H ok
g. ∅; ∅;H ` ∆ ok

then:
∅; ∆;H, x:T ` e : T

Proof is by deduction

1.

1. let R = C<r′, S′>

2.

2. class C<o′ →[b′l b′u], X> {U f; W}

3.

3. <o′′ →[b′′l b′′u], X′>U m(U′ x) {return eo;} ∈ W

}
by a, premises mBody

4.

4. e = [r′/o′, r/o′′, S′/X, S/X′, ι/this]e0 by a, def mBody

5.

5. T = [r′/o′, r/o′′, S′/X, S/X′, ι/this]U′

6.

6. T = [r′/o′, r/o′′, S′/X, S/X′, ι/this]U

}
by b, def mType

7.

7. ∆;H, this:C<r′, X> ` r ¹ [r′/o′, r/o′′]b
′′
u

8.

8. ∆;H, this:C<r′, X> ` [r′/o′, r/o′′]b
′′
l ¹ r



 by b, premises mType

9.

9. let al = o′0 or ⊥

10.

10. X→[al ©], X′ →[⊥ ©]; o′ →[b′l b′u], o
′′ →[b′′l b′′u]; this:C<o

′, X>, x:U′ ` e0 : U
by 2, 3, def T-Class, def T-Method

11.

11. X→[al ©], X′ →[⊥ ©]; ∆, o′ →[b′l b′u], o
′′ →[b′′l b′′u];H, this:C<o′, X>, x:U′ ` e0 : U

by 10, lemma 10

12.

12. ∅;∆;H ` R ok by e, f, g, lemma 47
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13.

13. ∆;H ` r′ ok

14.

14. ∅; ∆;H ` S′ ok

15.

15. ∆;H, this:C<r′, X> ` [r′/o′]b′l ¹ r′

16.

16. ∆;H, this:C<r′, X> ` r′ ¹ [r′/o′]b′u

17.

17. ∀S′i ∈ S′ : ∅;∆;H ` r′0 ¹ own∅(S′i)





by 12, 1, def F-Class

18.

18. X→[[r′/o′, r/o′′]al ©], X′ →[⊥ ©];∆;H, this:C<r′, X>, x:[r′/o′, r/o′′]U′ `
[r′/o′, r/o′′]e0 : [r′/o′, r/o′′]U

by 11, c, 13, 7, 8, 1, 15, 16, f, g, lemma 30

19.

19. ∅;∆;H ` [r′/o′, r/o′′]al ¹ own∅(S′) by 9, 17 or I −Bottom

20.

20. ∅;∆;H, this:R, x:[r′/o′, r/o′′, S′/X, S/X′]U′ `
[r′/o′, r/o′′, S′/X, S/X′]e0 : [r′/o′, r/o′′, S′/X, S/X′]U

by 18, d, 14, f, 19, I-Bottom, I-World, lemma 20

21.

21. ∅;∆;H, x:[r′/o′, r/o′′, S′/X, S/X′, ι/this]U′ `
[r′/o′, r/o′′, S′/X, S/X′, ι/this]e0 : [S′/X, S/X′, r′/o′, r/o′′, ι/this]U

by 20, e, 1, lemma 1, f, g, lemma 43

22.

22. ∅;∆;H, x:T ` e : T by 21, 5, 4, 6

Lemma 51. (Reduction preserves heap judgements)

If:
a. e;H ; e′;H′

b. ...H... ` ...
c. e′ 6= err

then:
...H′... ` ...

Proof is by structural induction on the derivation of e;H ; e′;H′

Lemma 52. (Inversion lemma, object creation)

If:
a. Ψ; ∆; Γ ` new C<a, U> : T

then:
∆; Γ ` C<a, U> <: T
Ψ; ∆; Γ ` C<a, U> ok

Proof is by structural induction on the derivation of Ψ; ∆; Γ ` new C<a, U> : T

Lemma 53. (Inversion lemma, field access)

If:
a. Ψ; ∆; Γ ` γ.f : T

then:
Ψ; ∆; Γ ` γ : N
∆; Γ ` fType(f, γ, N) <: T

Proof is by structural induction on the derivation of Ψ; ∆; Γ ` γ.f : T
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Lemma 54. (Inversion lemma, field assignment)

If:
a. Ψ; ∆; Γ ` γ.f = e : T

then:
Ψ; ∆; Γ ` γ : N
fType(f, γ, N) = U

Ψ; ∆; Γ ` e : U
∆; Γ ` U <: T

Proof is by structural induction on the derivation of Ψ; ∆; Γ ` γ.f = e : T

Lemma 55. (Inversion lemma, method invocation)

If:
a. Ψ; ∆; Γ ` γ.<a, U>m(e) : T

then:
Ψ; ∆; Γ ` γ : N

mType∆;Γ(m<a, U>, γ, N) = T→T
′

Ψ; ∆; Γ ` e : T

∆; Γ ` a ok
Ψ; ∆; Γ ` U ok
∆; Γ ` T′ <: T

Proof is by structural induction on the derivation of Ψ; ∆; Γ ` γ.<a, U>m(e) : T

Lemma 56. (Inversion lemma, unpacking)

If:
a. Ψ; ∆; Γ ` open e1 as x:o in e2 : T

then:

Ψ; ∆; Γ ` e1 : ∃o→[bl bu].N

Ψ; ∆, o→[bl bu]; Γ, x:N ` e2 : U
Ψ; ∆; Γ ` U ok
∆; Γ ` U <: T

Proof is by structural induction on the derivation of Ψ; ∆; Γ ` open e1 as x:o in e2 : T

Lemma 57. (Inversion lemma, packing)

If:

a. Ψ; ∆; Γ ` close e with o→[bl bu] hiding a : T
then:

∆; Γ ` [a/o]bl ¹ a

∆; Γ ` a ¹ [a/o]bu

∆; Γ ` a ok
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Ψ; ∆; Γ ` e : [a/o]N

Ψ; ∆; Γ ` ∃o→[bl bu].N ok

∆; Γ ` ∃o→[bl bu].N <: T

Proof is by structural induction on the derivation of Ψ; ∆; Γ ` close e with o→[bl bu] hiding r :
T

Lemma 58. (Well-typed values have addresses in the domain of the variable envi-
ronment)

If:
a. Ψ; ∆; Γ ` v : T
b. add(v) defined

then:
add(v) ∈ dom(Γ)

Proof is by structural induction on the derivation of Ψ; ∆; Γ ` v : T

Lemma 59. (Canonical Forms)

If:

a. ∅; ∅;H ` v : ∃o→[bl bu].N

b. ∅ ` H ok
then:

v = close v′ with o→[b′l b′u] hiding r

Proof is by structural induction on the derivation of ∅; ∅;H ` v : ∃o→[bl bu].N

Lemma 60. ( Reduction preserves owners )

If:
a. e;H ; e′;H′

b. ownH(v) = ι
c. e′ 6= err

then:
ownH′(v) = ι

Proof is by structural induction on the derivation of e;H ; e′;H′ with a case analysis on the
last step:

Case 1. (R-Field-Null, R-Assign-Null, R-Invk-Null, RC-Assign-Err, RC-Invk-Err, RC-Open-
Err, RC-Close-Err)

N/A by c

Case 2. (R-New)
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1.

1. H′ = H, ι → ... by premise R-New

2.

2. v 6= ι by b, def own

3.

3. done by 2, 1, def own

Case 3. (R-Field, R-Invk, R-Open-Close)

trivial, since H′ = H
Case 4. (R-Assign)

1.

1. e = ι.f1 = v by def R-Assign

2.

2. H(ι) = {C<a, T>; f→v}

3.

3. H′ = H[ι 7→ {C<a, T>; f→v[fi 7→ v]}]
}

by premises R-Assign

Case analysis on v:

Case 1. v 6= ι

easy, since the rest of the heap is unchanged, def own

Case 2. v = ι

1.

2.1. ownH(v) = a0 by 2, def own

2.

2.2. ownH′(v) = a0 by 3, def own

3.

2.3. done by 2.2, 2.3

Case 5. (RC-Assign, RC-Invk, RC-Open, RC-Close)

easy, by ind hyp

Lemma 61. ( An object is inside the owner of its fields )

If:
a. fType(fi, ι, R) = T

b. ∅; ∆;H ` ι : R
c. ∆ ` H ok
d. ∅; ∅;H ` ∆ ok

then:
∆;H ` ι ¹ own(T)

Proof is by deduction

1.

1. class C<o→[bl bu], X> {U f; W} by premise of fType

2.

2. R = C<r, T′>

3.

3. T = [r/o, T′/X, ι/this]Ui

}
by def fType

4.

4. X→[o0 ©]; o→[bl bu]; this:C<o, X> ` Ui ok

5.

5. ⊥6∈ o→[bl bu], Ui

}
by 1, wf prog, T-Class
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6.

6. ∅;∆;H ` R ok by b, c, d, lemma 47

7.

7. ∅′;∆;H ` T′ ok

8.

8. ∀ri ∈ r : ∆;H ` r0 ¹ ri

9.

9. ∀T′i ∈ T′ : ∆;H ` r0 ¹ own(T′i)



 by 6, def F-Class

Case analysis on Ui:

Case 1. Ui = Xi

1.

1.1. T = [ι/this]T′i by 3

2.

1.2. T = T′i by 1.1, 7

3.

1.3. ∆;H ` r0 ¹ own(T) by 9, 1.2

4.

1.4. ∆;H ` ι ¹ r0 by b, 2, lemma 12, I-Owner

5.

1.5. done by 1.4, 1.3, I-Trans

Case 2. Ui = D<aT , TT >

1.

2.1. T = [r/o, T′/X, ι/this]D<aT, TT> by 3

2.

2.2. own(T) = [r/o, ι/this]aT
0 by 2.1, def own

3.

2.3. aT
0 ∈ o, this,© by 4, def wf owners, syntax a

4.

2.4. own(T) ∈ r, ι,© by 2.2, 2.3

5.

2.5. if own(T) = ι or ©, then done trivially

6.

2.6. wlog assume own(T) = ri by 2.4, 2.5

7.

2.7. ∆;H ` r0 ¹ own(T) by 2.6, 8

8.

2.8. ∆;H ` ι ¹ r0 by b, 2, lemma 12, def own, I-Owner

9.

2.9. done by 2.7, 2.8, I-Trans

Case 3. Ui = ∃∆T.D<aT, TT >

1.

3.1. T = [r/o, T′/X, ι/this]∃∆T .D<aT , TT > by 3

2.

3.2. if [r/o, ι/this]a
T

0 6∈ dom(∆), own(T) = [r/o, ι/this]a
T

0 and we follow the above case
by 3.1, def own

3.

3.3. otherwise [r/o, ι/this]a
T

0 = o by def own

4.

3.4. where ∆T (o) = [bl bu] by premise own

5.

3.5. own(T) = glb[r/o, ι/this]∆T ([r/o, ι/this]bl) by 3.3, 3.4, def own

6.

3.6. X→[o0 ©]; o→[bl bu]; this:C<o, X> ` ∆T okby 4, def F-Exists

7.

3.7. X→[o0 ©]; o→[bl bu]; this:C<o, X> ` bl ok by 3.6, 3.4, def F-Env

8.

3.8. bl ∈ o, this,©, dom(∆T ) by 3.7, def wf owners, 5

9.

3.9. let b = [r/o, ι/this]bl

10.

3.10. b ∈ r, ι,©, dom(∆T ) by 3.8, 3.9

11.

3.11. own(T) ∈ r, ι,© by 3.5, 3.10, def glb

12.

3.12. if own(T) = ι or ©, then done trivially

13.

3.13. wlog assume own(T) = ri by 3.11, 3.12

14.

3.14. ∆;H ` r0 ¹ own(T) by 3.13, 8

15.

3.15. ∆;H ` ι ¹ r0 by b, 2, lemma 12, def own, I-Owner

16.

3.16. done by 3.14, 3.15, I-Trans

Lemma 62. ( The glb function preserves the inside relation )
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If:
a. ∆; Γ ` ∆′′ ¹ ∆′

b. ∅; Γ ` ∆ ok
c. Ψ; ∆; ∅ ` Γ ok

then:
∆; Γ ` glb∆′(b) ¹ glb∆′′(b)

Proof is by case analysis on b

Case 1. b 6∈ dom(∆′)

1.

1. dom(∆′′) = dom(∆′) by a, def I-Env

2.

2. b 6∈ dom(∆′′) by 1, def case

3.

3. glb∆′(b) = b by def case, def glb

4.

4. glb∆′′(b) = b by 2, def glb

5.

5. done by I-Reflex, 3, 4

Case 2. b ∈ dom(∆′)

1.

1. dom(∆′′) = dom(∆′) by a, def I-Env

2.

2. b ∈ dom(∆′′) by 1, def case

3.

3. let ∆′(b) = [bl bu] by def case

4.

4. let ∆′′(b) = [b′l b′u] by 2

5.

5. glb∆′(b) = glb∆′(bl) by 3, def glb

6.

6. glb∆′′(b) = glb∆′′(b′l) by 4, def glb

7.

7. ∆;Γ ` bl ¹ b′l by a, def I-Env

8.

8. Ψ;∆; Γ ` bl, b′l ok

9.

9. or bl = b′l

}
by 7, b, c, lemma 44

10.

10. if case 9, then done by ind hyp, otherwise :

11.

11. glb∆′(b) = bl by 5, 8, def glb

12.

12. glb∆′′(b) = b′l by 6, 8, def glb

13.

13. done by 7, 11, 12

Lemma 63. ( The owner of a subtype is outside the owner of the supertype )

If:
a. ∆; Γ ` T <: T′

b. ∅; Γ ` ∆ ok
c. Ψ; ∆; ∅ ` Γ ok

then:
∆; Γ ` ownΨ(T′) ¹ ownΨ(T)

Proof is by case analysis on the last step of the derivation of ∆; Γ ` T′ <: T

Case 1. (S-Reflex)

trivial

Case 2. (S-Full)

1.

1. T = ∃∆′.C<a, T>

2.

2. T′ = ∃∆′′.C<a, T>

}
by def S-Full
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3.

3. ∆;Γ ` ∆′ ¹ ∆′′ by premise S-Full

4.

4. ownΨ(T) = glb∆′(a0) by 1, def own

5.

5. ownΨ(T′) = glb∆′′(a0) by 2, def own

6.

6. ∆;Γ ` ownΨ(T′) ¹ ownΨ(T) by 3, 4, 5, b, c, lemma 62

Lemma 64. ( the result of glb is inside the input )

If:
a. for all b

then:

∆, o→[bl bu] ` glbo→[bl bu]
(b) ¹ b

Proof is by structural induction on the derivation of glbo→[bl bu]
(b) with a case analysis on the

last step:

Case 1. base case

1.

1. glbo→[bl bu]
(b) = b by def glb

2.

2. done by 1, I-Reflex

Case 2. inductive case

1.

1. glbo→[bl bu]
(b) = glbo→[bl bu]

(bli)

2.

2. b = oi

}
by def glb

3.

3. ∆, o→[bl bu] ` glbo→[bl bu]
(bli) ¹ bli by 1, ind hyp

4.

4. ∆, o→[bl bu] ` bli ¹ oi by I-Bound

5.

5. ∆, o→[bl bu] ` glbo→[bl bu]
(bli) ¹ oi by 3, 4, I-trans

6.

6. done by 5, 1, 2

Lemma 65. ( A dynamic owner is outside the static owner )

If:
a. ∅; ∆;H ` v : T
b. add(v) defined
c. ∅;H ` ∆ ok
d. ∆;` H ok

then:
∆;H ` own∅(T) ¹ ownH(v)

Proof is by structural induction on the derivation of ∅; ∆;H ` v : ∃o→[bl bu].C<a, T> with
a case analysis on the last step:

Case 1. (T-Subs)

1.

1. ∅;∆;H ` v : T′

2.

2. ∆;H ` T′ <: T

}
by premises T-Subs

3.

3. ∆;H ` own∅(T′) ¹ ownH(v) by 1, b, ind hyp

4.

4. ∆;H ` own∅(T) ¹ ownH(T′) by 2, c, d, lemma 63

5.

5. done by 3, 4, I-Trans
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Case 2. (T-Var)

1.

1. v = γ by def T-Var

2.

2. T = H(γ) by def T-Var, def H-T

3.

3. H(γ) = C<r, T>, ... by def H

4.

4. ownH(γ) = r0 by 3, def ownH

5.

5. T = C<r, T> by 2, 3

6.

6. own∅(T) = r0 by 5, def own

7.

7. done by 4, 6, I-Reflex

Case 3. (T-Close)

1.

1. v = close v′ with o→[bl bu] hiding r′

2.

2. T = ∃o→[bl bu].N

}
by def T-Close

3.

3. ∆;H ` [r/o]bl ¹ r

4.

4. ∆;H ` r ¹ [r/o]bu

5.

5. ∆;H ` r ok

6.

6. ∅;∆;H ` v′ : [r/o]N

7.

7. ∅;∆;H ` T ok





by premises T-Close

8.

8. ∆;H ` own∅([r/o]N) ¹ ownH(v′) by 6, b, ind hyp

9.

9. ownH(v) = ownH(v′) by 1, def ownH

10.

10. let N = C<a, T>

Case analysis on a0:

Case 1. a0 6∈ o

1.

1.1. own∅(T) = a0 by 2, def own, def glb

2.

1.2. own∅([r/o]N) = a0 by 1.1,10, a0 6∈ o

3.

1.3. ∆;H ` a0 ¹ ownH(v′) by 8, 1.2

4.

1.4. ∆;H ` own(T) ¹ ownH(v′) by 1.3, 1.1

5.

1.5. done by 1.4, 9

Case 2. ∃i : a0 = oi

1.

2.1. own∅(T) = glbo→[bl bu]
(bil) by 2, 10, def own

2.

2.2. own∅([r/o]N) = ri by 2.1, 10, def own

3.

2.3. ∆,H ` ri ¹ ownH(v) by 8, 2.2, 9

4.

2.4. ∆, o→[bl bu];H ` glbo→[bl bu]
(bil) ¹ bil by lemma 64

5.

2.5. ∆;H ` [r/o]glbo→[bl bu]
(bil) ¹ [r/o]bil by 2.4, 5, 3, 4, c, d, lemma 22

6.

2.6. o ∩ fv(glbo→[bl bu]
(bil)) = ∅ by def glb

7.

2.7. ∆;H ` glbo→[bl bu]
(bil) ¹ [r/o]bil by 2.5, 2.6

8.

2.8. ∆;H ` glbo→[bl bu]
(bil) ¹ ri by 2.7, 3, I-Trans

9.

2.9. ∆;H ` own∅(T) ¹ ri by 2.8, 2.1

10.

2.10. ∆;H ` own∅(T) ¹ ownH(v) by 2.9, 2.3, I-Trans

Case 4. (T-Null, T-Field, T-Assign, T-New, T-Invk, T-Open)

N/A
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Lemma 66. .
Theorem (Subject Reduction)

If:
a. ∅; ∆;H ` e : T
b. e;H ; e′;H′

c. ∆;H ` e ok
d. ∅;H ` ∆ ok
e. e′ 6= err

then:
∅; ∆;H′ ` e′ : T
∆;H′ ` e′ ok

Proof is by structural induction on the derivation of e;H ; e′;H′ with a case analysis on the
last step:

Case 1. (R-Field-Null, R-Assign-Null, R-Invk-Null, RC-Assign-Err, RC-Invk-Err, RC-Open-
Err, RC-Close-Err)

N/A by e

Case 2. (R-Field)

1.

1. e = ι.fi

2.

2. e′ = vi

3.

3. H′ = H



 by def R-Field

4.

4. H(ι) = {R; f→v} by premises R-Field

5.

5. ∅;∆;H ` ι : N

6.

6. fType(fi, ι, N) = T′

7.

7. ∆;H ` T′ <: T



 by a, 1, lemma 53

8.

8. ∆;H ` R <: N by 5, lemma 32, 4, def H-T

9.

9. R = N by 8, lemma 3

10.

10. ∆ ` H ok by c, def F-Config

11.

11. ∅;∆;H ` vi : T′ by 10, 4, 6, 9, def F-Heap

12.

12. ∅;∆;H ` T ok by a, d, 10, lemma 47

13.

13. ∅;∆;H ` vi : T by 11, 7, 12, T-Subs

14.

14. ∅;∆;H′ ` e′ : T by 13, 2, 3

15.

15. ∀ι ∈ fv(e′) : ι ∈ dom(H)′ by 14, lemma 49

16.

16. ∆;H′ ` e′ ok by 3, 10, 15

17.

17. done by 14, 16

Case 3. (R-Assign)

1.

1. e = ι.fi = v

2.

2. e′ = v

3.

3. H′ = H



 by def R-Assign

4.

4. H(ι) = {R; f→v}

5.

5. H′ = H[ι 7→ {R; f→v[fi 7→ v]}]
}

by premises R-Assign
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6.

6. ∅;∆;H ` ι : N

7.

7. fType(fi, ι, N) = T′

8.

8. ∅;∆;H ` v : T′

9.

9. ∆;H ` T′ <: T





by a, 1, lemma 54

10.

10. ∆ ` H ok by c, def F-Config

11.

11. ∅;∆;H ` T ok by a, d, 10, lemma 47

12.

12. ∅;∆;H ` v : T by 8, 9, 11

13.

13. ∅;∆;H′ ` v : T by 12, b, e, lemma 51

14.

14. if add(v) not defined, then steps15−23are unnecessary, therefore assume v defined

15.

15. add(v ∈ dom(H′) by 14, 13, lemma 58

16.

16. if add(v)not defined, goto24

17.

17. ∆;H ` R <: N by 6, lemma 32, 4, def H-T

18.

18. R = N by 17, lemma 3

19.

19. ∆,H ` ι ¹ own(T′) by 7, 6, 18, 10, d, lemma 61

20.

20. ∆,H ` own(T′) ¹ ownH(v) by 8, 16, d, 11, lemma 65

21.

21. ∆,H ` ι ¹ ownH(v) by 19, 20, I-Trans

22.

22. ∆,H′ ` ι ¹ ownH(v) by 21, b, lemma 51

23.

23. ∆,H′ ` ι ¹ ownH′(v) by 22, e, lemma 60

24.

24. ∆ ` H ok′ by 10, 5, 7, 8, 14, 15, 23 or 16, def F-Heap

25.

25. ∀ι ∈ fv(e′) : ι ∈ dom(H)′ by 13, lemma 49

26.

26. ∆;H′ ` e′ ok by 24, 25

27.

27. done by 13, 26

Case 4. (R-New)

1.

1. e = new C<r, T>

2.

2. e′ = ι

}
by def R-New

3.

3. H(ι) undefined

4.

4. fields(C) = f

5.

5. H′ = H, ι → {C<r, T>; f→null}



 by premises R-New

6.

6. ∅;∆;H ` C<r, T> <: T

7.

7. ∅;∆;H ` C<r, T> ok

}
by 1, a, lemma 52

8.

8. ∅;∆;H′ ` ι : fst(H′(ι)) by T-Var, H-T

9.

9. ∅;∆;H′ ` ι : C<r, T> by 8, 5

10.

10. ∆;H′ ` C<r, T> <: T by 6, 5, lemma 8

11.

11. ∆ ` H ok by c, def F-Config

12.

12. ∅;∆;H ` T ok by a, d, 11, lemma 47

13.

13. ∅;∆;H′ ` ι : T by 9, 10, 12, T-Subs

14.

14. let fType(f, ι, C<r, T>) = U

15.

15. ∅;∆;H ` U ok by 14, 7, lemma 45

16.

16. ∅;∆;H ` null : U by 15, T-Null

17.

17. ∆ ` H, ι → {C<r, T>; f→null} ok by 11, 7, 14, 16, def F-Heap

18.

18. add(null) undefined by def add

19.

19. ∆ ` H′ ok by 17, 5

20.

20. ∀ι ∈ fv(e′) : ι ∈ dom(H′) by 2, 5

21.

21. ∆;H′ ` e′ ok by 20, 19, F-Config

22.

22. done by 13, 21

Case 5. (R-Invk)



B.2. Proofs 240

1.

1. e = ι.<r, U>m(v)

2.

2. e′ = [v/x]e0

3.

3. H′ = H



 by def R-Invk

4.

4. H(ι) = {R;...}

5.

5. mBody(m<r, U>, ι, R) = (x; e0)

}
by premises R-Invk

6.

6. ∅; ∆;H ` ι : N

7.

7. mType∆;H(m<r, U>, ι, N) = T→T
′

8.

8. ∅; ∆;H ` e : T

9.

9. ∆;H ` r ok

10.

10. ∅; ∆;H ` U ok

11.

11. ∆;H ` T′ <: T





by 1, a, lemma 55

12.

12. ∆;H ` R <: N by 4, 6, lemma 32, def H-T

13.

13. R = N by 12, lemma 3

14.

14. ∆ ` H ok by c, def F-Config

15.

15. ∅;∆;H, x:T ` e0 : T′ by 5, 7, 6, 13, 9, 10, d, 14,
lemma 50

16.

16. ∅;∆;H ` [v/x]e0 : [v/x]T
′

by 15, 6, lemma 1, 14, d, lemma 43

17.

17. ∅;∆;H ` T′ ok by 15, 11, lemma 47

18.

18. ∅;∆;H ` [v/x]e0 : T′ by 16, 17

19.

19. ∅;∆;H ` T ok by a, d, 14, lemma 47

20.

20. ∅;∆;H ` [v/x]e0 : T by 18, 11, 19, T-Subs

21.

21. ∅;∆;H′ ` e′ : T by 20, 2, 3

22.

22. ∀ι ∈ fv(v) : ι ∈ dom(H) by 1, c, def F-Config

23.

23. ∀ι ∈ fv(e0) : ι ∈ dom(H), x by 15, lemma 49

24.

24. ∀ι ∈ fv([v/x]e0) : ι ∈ dom(H) by 22, 23

25.

25. ∀ι ∈ fv(e′) : ι ∈ dom(H) by 24, 2

26.

26. ∆;H′ ` e′ ok by 3, 14, 25

27.

27. done by 21, 26

Case 6. (R-Open-Close)

1.

1. e = open (close v with o→[bl bu] hiding r) as x:o in e

2.

2. e′ = [r/o, v/x]e

3.

3. H′ = H



 by def R-Open-Close

4.

4. ∅;∆;H ` close v with o→[bl bu] hiding r : ∃o′ →[b′l b′u].N

5.

5. ∅;∆, o′ →[b′l b′u];H, x:N ` e : U

6.

6. ∅;∆;H ` U ok

7.

7. ∆;H ` U <: T





by 1, a, lemma 56

8.

8. ∆;H ` [r/o]bl ¹ r

9.

9. ∆;H ` r ¹ [r/o]bu

10.

10. ∆;H ` r ok

11.

11. ∅; ∆;H ` v : [r/o]N
′

12.

12. ∅; ∆;H ` ∃o→[bl bu].N′ ok

13.

13. ∆;H ` ∃o→[bl bu].N′ <: ∃o′ →[b′l b′u].N





by 4, lemma 57

14.

14. ∆ ` H ok by c, def F-Config

15.

15. ∅;∆;H, x:[r/o]N ` [r/o]e : [r/o]U by 5, 8, 9, 10, d, 14, lemma 30

16.

16. N = N′ by 13, lemma 12

17.

17. ∆, o′ →[b′l b′u];H ` N′ <: N by 16, lemma 1

18.

18. ∆;H ` [r/o]N
′
<: [r/o]N by 17, 10, 8, 9, d, 14, lemma 24

19.

19. ∅;∆;H ` [r/o, v/x]e : [r/o, v/x]U by 15, 11, 18, d, 14, lemma 43

20.

20. ∅;∆;H ` [r/o, v/x]e : U by 19, 6

21.

21. ∅;∆;H ` T ok by a, d, 14, lemma 47
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22.

22. ∅;∆;H ` [r/o, v/x]e : T by 20, 7, 21, T-Subs

23.

23. ∅;∆;H′ ` e′ : T by 22, 2, 3

24.

24. ∀ι ∈ fv(e′) : ι ∈ dom(H)′ by 23, lemma 49

25.

25. ∆;H′ ` e′ ok by 3, 14, 24

26.

26. done by 23, 25

Case 7. (RC-Assign)

1.

1. e = ι.f = e′′

2.

2. e′ = ι.f = e′′′

}
by def RC-Assign

3.

3. e′′;H ; e′′′;H′

4.

4. e′′′ 6= err

}
by premises RC-Assign

5.

5. ∅;∆;H ` ι : N

6.

6. fType(f, ι, N) = U

7.

7. ∅;∆;H ` e′′ : U

8.

8. ∆;H ` U <: T





by 1, a, lemma 54

9.

9. ∆;H ` e′′ ok by c, 1, def F-Config

10.

10. ∅; ∆;H′ ` e′′′ : U

11.

11. ∆;H′ ` e′′′ ok

}
by 7, 3, 9, d, 4, ind hyp

12.

12. ∅;∆;H′ ` γ.f= e′′′ : U by 5, 6, 10, T-Assign

13.

13. ∆ ` H′ ok

14.

14. fv(e′′′) ⊆ dom(H′)
}

by 11, def F-Config

15.

15. ∅;∆;H′ ` T ok by a, d, 13, lemma 47

16.

16. ∅;∆;H′ ` γ.f= e′′′ : T by 12, 8, 15, T-Subs

17.

17. ∅;∆;H′ ` e′ : T by 16, 2

18.

18. fv(e′) ⊆ dom(H′) by c, 1, 2, 14

19.

19. ∆;H′ ` e′ ok by 13, 18, F-Config

20.

20. done by 17, 19

Case 8. (RC-Invk)

1.

1. e = ι.<r, T>m(v,ei,e)

2.

2. e′ = ι.<r, T>m(v,e′i,e)

}
by def RC-Invk

3.

3. ei;H ; e′i;H′

4.

4. e′i 6= err

}
by premises RC-Invk

5.

5. ∅; ∆;H ` ι : N

6.

6. mType∆;H(m<r, T>, ι, N) = U→U

7.

7. ∅; ∆;H ` (v, ei, e) : U

8.

8. ∆;H ` r ok

9.

9. ∅; ∆;H ` T ok

10.

10. ∆;H ` U <: T





by 1, a, lemma 55

11.

11. ∆;H ` ei ok by d, 1, def F-Config

12.

12. ∅; ∆;H′ ` e′i : Ui

13.

13. ∆;H′ ` e′i ok

}
by 7, 3, 11, d, 4, ind hyp

14.

14. ∅;∆;H′ ` ι.<r, T>m(v,e′i,e) : U by 5, 6, 7, 12, 8, 9, T-Invk

15.

15. ∅;∆;H′ ` e′ : U by 14, 2

16.

16. ∆ ` H′ ok

17.

17. fv(e′i) ⊆ dom(H′)
}

by 13, def F-Config

18.

18. ∅;∆;H′ ` T ok by a, d, 16, lemma 47

19.

19. ∅;∆;H′ ` e′ : T by 15, 10, 18, T-Subs

20.

20. fv(e′) ⊆ dom(H′) by c, 1, 2, 17

21.

21. ∆;H′ ` e′ ok by 16, 20, F-Config

22.

22. done by 19, 21
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Case 9. (RC-Open)

1.

1. e = open e1 as x:o in e2

2.

2. e′ = open e′1 as x:o in e2

}
by def RC-Open

3.

3. e1;H ; e′1;H′

4.

4. e′1 6= err

}
by premises RC-Open

5.

5. ∅;∆;H ` e1 : ∃o→[bl bu].N

6.

6. ∅;∆, o→[bl bu];H, x:N ` e2 : U

7.

7. ∅;∆;H ` U ok

8.

8. ∆;H ` U <: T





by 1, a, lemma 56

9.

9. ∆;H ` e1 ok by b, 1, def F-Config

10.

10. ∅; ∆;H′ ` e′1 : ∃o→[bl bu].N

11.

11. ∆;H′ ` e′1 ok

}
by 5, 3, 9, d, 4, ind hyp

12.

12. ∅;∆;H′ ` open e′1 as x:o in e2 : U by 5, 6, 7, 10, T-Open

13.

13. ∅;∆;H′ ` e′ : U by 12, 2

14.

14. ∆ ` H′ ok

15.

15. fv(e′1) ⊆ dom(H′)
}

by 11, def F-Config

16.

16. ∅;∆;H′ ` T ok by a, d, 14, lemma 47

17.

17. ∅;∆;H′ ` e′ : T by 13, 8, 16, T-Subs

18.

18. fv(e′) ⊆ dom(H′) by c, 1, 2, 15

19.

19. ∆;H′ ` e′ ok by 14, 18, F-Config

20.

20. done by 17, 19

Case 10. (RC-Close)

1.

1. e = close e′′ with o→[bl bu] hiding r

2.

2. e′ = close e′′′ with o→[bl bu] hiding r

}
by def RC-Close

3.

3. e′′;H ; e′′′;H′

4.

4. e′′′ 6= err

}
by premises RC-Close

5.

5. ∆;H ` [a/o]bl ¹ a

6.

6. ∆;H ` a ¹ [a/o]bu

7.

7. ∆;H ` a ok

8.

8. ∅; ∆;H ` e′′ : [a/o]N

9.

9. ∅; ∆;H ` ∃o→[bl bu].N ok

10.

10. ∆;H ` ∃o→[bl bu].N <: T





by 1, a, lemma 57

11.

11. ∆;H ` e′′ ok by d, 1, def F-Config

12.

12. ∅; ∆;H′ ` e′′′ : [a/o]N

13.

13. ∆;H′ ` e′′′ ok

}
by 7, 3, 11, d, 4, ind hyp

14.

14. ∅;∆;H′ ` close e′′′ with o→[bl bu] hiding r : ∃o→[bl bu].N
by 5, 6, 7, 12, 8, 9, T-Close

15.

15. ∅;∆;H′ ` e′ : ∃o→[bl bu].N by 14, 2

16.

16. ∆ ` H′ ok

17.

17. fv(e′′′) ⊆ dom(H′)
}

by 13, def F-Config

18.

18. ∅;∆;H′ ` T ok by a, d, 16, lemma 47

19.

19. ∅;∆;H′ ` e′ : T by 15, 10, 18, T-Subs

20.

20. fv(e′) ⊆ dom(H′) by c, 1, 2, 17

21.

21. ∆;H′ ` e′ ok by 16, 20, F-Config

22.

22. done by 19, 21

Lemma 67. .
Theorem (Progress)
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If:
a. ∅; ∅;H ` e : T
b. ∅ ` H ok

then:
e;H ; e′;H′

or:
there exists v such that e = v

Proof is by structural induction on the derivation of ∅; ∅;H ` e : T with a case analysis on the
last step:

Case 1. (T-Var)

1.

1. e = γ by def T-Var

2.

2. e = ι by a, 1, lemma 49

3.

3. done, e = v by 2

Case 2. (T-Subs)

1.

1. ∅; ∅;H ` e : T′ by premise T-Subs

2.

2. done by 1, b, ind hyp

Case 3. (T-Field)

1.

1. e = γ.f by def T-Field

2.

2. ∅; ∅;H ` γ : N by premise of T-Field

3.

3. γ = ι ∈ dom(H) by 2, lemma 49

4.

4. done by 1, 3, R-Field

Case 4. (T-Assign)

1.

1. e = γ.f = e′′ by def T-Assign

2.

2. ∅; ∅;H ` γ : N

3.

3. ∅; ∅;H ` e′′ : U

}
by premises of T-Assign

4.

4. γ = ι ∈ dom(H) by 2, lemma 49

5.

5. e′′,H ; e′′′,H′ or ∃v : e′ = v by 3, b, ind hyp

Case analysis on e′′:

Case 1. e′′,H ; e′′′,H′

1.

1.1. done by 1,4,RC-Assign or RC-Assign-Err

Case 2. ∃v : e′′ = v

1.

2.1. done by 1, 4, e′′ = v, R-Assign

Case 5. (T-Invk)
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1.

1. e = γ.<a, T>m(e) by def T-Invk

2.

2. ∅; ∅;H ` γ : N

3.

3. ∅; ∅;H ` e : U

4.

4. mType defined



 by premises of T-Invk

5.

5. γ = ι ∈ dom(H) by 2, lemma 49

6.

6. fv(a) ⊆ dom(H) by 1, a, lemma 49

7.

7. a = r by 2, def syntax r

8.

8. ∀ei ∈ e : ei,H ; e′i,H′ or ∃v : ei = v by 3, b, ind hyp

Case analysis on e:

Case 1. ∃ei ∈ e : ei,H ; e′i,H′

1.

1.1. done by 1, 5, 7, RC-Invk or RC-Invk-Err

Case 2. ∀ei ∈ e : ∃v : ei = v

1.

2.1. mBody defined by 4, def mBody,mType

2.

2.2. done by 1, 5, 7, 2.1, R-Invk

Case 6. (T-New)

1.

1. e = new C<a, U> by def T-New

2.

2. ∅; ∅;H ` C<a, U> ok by premise T-New

3.

3. ∅; ∅;H ` a ok

4.

4. ∅; ∅;H ` U ok

5.

5. class C<...>...{..f; ...}



 by 2, premises F-Class

6.

6. a = r by 3, syntax of a

7.

7. fields(C) = f by 5 def fields

8.

8. done by 1, 7, 6, R-New

Case 7. (T-Open)

1.

1. e = open e′′ as x:o in e′′′ by def T-Open

2.

2. ∅; ∅;H ` e′′ : ∃o→[bl bu].N by premises T-Open

3.

3. e′′,H ; e′′′,H′ or ∃v : e′′ = v by 2, b, ind hyp

Case analysis on e′′:

Case 1. e′′,H ; e′′′,H′

1.

1.1. done by 1,RC-Open or RC-Open-Err

Case 2. ∃v : e′′ = v

1.

2.1. e′′ = close v′ with o→[b′l b′u] hiding r by e′′ = v, 2, b, lemma 59

2.

2.2. done by 1, 2.1, R-Open-Close
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Case 8. (T-Close)

1.

1. e = close e′′ with o→[bl bu] hiding a by def T-Close

2.

2. fv(a) ⊆ dom(H) by 1, a, lemma 49

3.

3. a = r by 2, def syntax r

4.

4. ∅; ∅;H ` e′′ : U by premise T-Close

5.

5. e′′,H ; e′′′,H′ or ∃v : e′′ = v by 4, b, ind hyp

Case analysis on e′′:

Case 1. e′′,H ; e′′′,H′

1.

1.1. done by 1,3,RC-Close or RC-Close-Err

Case 2. ∃v : e′′ = v

1.

2.1. ∃v′ : e = v′ by 1, 3, e′′ = v
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and Neal Gafter. Adding Wildcards to the Java Programming Language. Journal of Object
Technology, 3(11):97–116, 2004. Special issue: OOPS track at SAC 2004, Nicosia/Cyprus.

[91] Christian Urban, Stefan Berghofer, and Michael Norrish. Barendregt’s Variable Convention
in Rule Inductions. In Conference on Automated Deduction (CADE), 2007.

[92] Mirko Viroli and Giovanni Rimassa. On Access Restriction with Java Wildcards. Journal
of Object Technology, 4(10):117–139, 2005. Special issue: OOPS track at SAC 2005, Santa
Fe/New Mexico. An earlier version appeared as “Understanding access restriction of variant
parametric types and Java wildcards” at SAC 2005.

[93] Jan Vitek and Boris Bokowski. Confined Types. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 1999.
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