
Mojojojo — More Ownership for Multiple Owners

Paley Li
Victoria University of Wellington

lipale@ecs.vuw.ac.nz

Nicholas Cameron
Victoria University of Wellington

ncameron@ecs.vuw.ac.nz

James Noble
Victoria University of Wellington

kjx@ecs.vuw.ac.nz

Abstract
Traditional ownership types organise the heap into a tree. Own-
ership types can support memory management, real-time systems,
concurrency, parallelism, and general purpose reasoning about pro-
grams. Trees, however, are too restrictive to describe many real
programs, limiting the usability of conventional ownership sys-
tems. Multiple ownership organises the heap into a directed acyclic
graph, rather than a tree. MOJO was the first language to support
multiple ownership; it featured multiple owners per object, owner-
wildcards, an effect system, and a simple ‘owners as sets’ model.

In this paper, we introduce Mojojojo, a successor to MOJO.
Mojojojo is both simpler and more powerful than MOJO: support-
ing generics and existential types (which allows for more re-usable
classes); a more expressive system of constraints for specifying
topology, which are closely tied to the simple set-theoretic model;
and a simpler formalisation. We contribute a thorough description
of Mojojojo, its formalisation and soundness proof, and a discus-
sion of how Mojojojo can be extended to incorporate prescriptive
constraints, addressing the same goals as owners-as-dominators or
owners-as-modifiers disciplines.

Categories and Subject Descriptors D.3.3 [Software]:
Programming Languages—Language Constructs and Features

General Terms Languages, Theory

Keywords Ownership types, multiple ownership, existential types,
permissions, effects

Now, if you’ll excuse me, I, Mojojojo, have a town to take
over. I have a world to conquer. I have to seize control of an
area and force its inhabitants to follow my way of thinking.1

1. Introduction
Ownership types are a static type system for enforcing a struc-
ture over the heap. This structure allows for sophisticated reasoning
about the heap in a number of domains. Most ownership systems
force the heap into a tree. Empirical studies of object-oriented pro-
grams [25, 24], however, have shown that runtime object structures
are more complex than simple trees. Objects may be shared be-
tween multiple threads or domains, suffer root sharing, diamond

1 This and other quotes adapted from [1].
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sharing, mutual ownership (butterflies) — as well as forming clean
arboreal hierarchies (trees).

Multiple ownership structures the heap as a directed acyclic
graph (DAG), rather than a tree. Multiple ownership can therefore
accommodate programs with more complex heap structures than
traditional ownership systems. In a multiple ownership world, ob-
jects may be owned by more than one object. Multiple ownership is
supported in the MOJO language [9]. But, MOJO has several prob-
lems: classes designed for multiple ownership cannot always have
the same declarations as those designed for a single owner; types
are more restrictive than necessary; the language does not support
encapsulation policies by restricting inter-object references or mod-
ifications; and the formalization is untidy.

In this paper, we describe and formalize a multiple ownership
system, Mojojojo, that attempts to resolve these problems. The
overarching design goal of Mojojojo has been to unify as many
features as possible to produce a simple and general language.
We have tried to produce a system that is expressive and flexible,
but is also simple and re-usable. We use a system of constraints,
based straightforwardly on the rules of set algebra, to describe
heap topologies. We use generics and existential quantification to
describe these topologies in types, which allows a single class to
describe objects which may be singly or multiply owned (this was
not possible in MOJO). Finally, Mojojojo has a smaller and less
complex formal foundation than MOJO, and so should be easier to
combine with other ownership type systems or to incorporate into
programming languages.

We make the following contributions:

• formal and informal descriptions of a multiple ownership sys-
tem, Mojojojo, which is polymorphic over all combinations of
known and unknown, and single and multiple owners;

• a general, set-theoretic constraint system to describe ownership
topologies;

• a type soundness proof for Mojojojo;
• the sketch of dual systems of permissions and effects that de-

scribe the permitted computations (permissions) and describe
the consequences of computation (effects).

The rest of this paper is organized as follows: in Sect. 2 we in-
troduce ownership types, multiple ownership, and existential own-
ership; in Sect. 3 we introduce the main features of our new lan-
guage, Mojojojo; in Sect. 4 we describe these features formally,
and describe some of the properties of the system, including type
soundness; in Sect. 5 we introduce our work towards permissions
and effects; in Sect. 6 we discuss how our system might be used in
a real language and future work; in Sect. 7 we discuss related work;
finally, in Sect. 8 we conclude.



2. Background
Ownership types [12, 27] are designed to make objects’ runtime
topologies explicit in programs, allowing programmers to describe
and control their programs’ runtime object topologies directly. For
example, an ownership type o:C denotes an object of class C with
owner o. The owner this means that objects are owned by the
current instance of a class (i.e. “this”). The owner owner means
the object that owns this. Owners can be generic in much the same
way as types [29]. For example we can write:

class List<E> {
this:Array<E> elems;
int used = 0;
void add(E elt) {

if (used > elems.length)
{ // throw out of memory error! }

elems[used] = elt;
used++;

}
}

to start declaring a generic List class backed by an array. The type
this:Array<E> says that each List instance will own its own
Array, but both the types and ownership of the elements in the array
are polymorphic, specified by the parameter E.

The semantics of ownership types depend on the particular
ownership scheme chosen. The earliest ownership type systems
[12, 10] enforce an ownership invariant known as “owners-as-
dominators”: all paths from the roots of the system to any owned
objects (like the array) must pass via that object’s owner (the list in
this case). This enforces an encapsulation discipline similar to the
law of Demeter [19]: component parts of an object are encapsulated
within their owners, and cannot be accessed outside.

Ownership systems designed to support verification of object
invariants generally support a different invariant known as the
“Universes” invariant [26, 14] or “owners-as-modifiers”. In these
systems, any object may refer to any other object, but objects can
only be modified by their owners. Therefore the array in our List
example can be read anywhere, but can only be modified within the
owner of this particular instance of List.

Ownership types can be used to describe the scope of effects
[11, 4, 9, 20]. An effect system [21, 16] describes the side-effects of
executing code. Effects can improve reasoning about a program by
the compiler, allowing for fine-grained parallelisation, re-ordering
of expressions, and determining which object’s invariants need to
be re-established. Effect based ownership systems generally con-
strain neither inter-object references or modifications; rather, they
allow compilers (or programmers) to show that two computations
will not interfere with each other, by showing that their effects are
disjoint.

2.1 Existential Ownership
Ownership types must be invariant in their owner component to
ensure soundness. This is similar to parametric types, which must
be invariant2 to ensure soundness (for example, generics in Java
[17] but not, infamously, arrays in early versions of Eiffel [13]). It
is sometimes convenient, however, to have collections of objects
belonging to different owners, and this requires variant ownership.
As in the world of type parametricity [18, 8], this feature can be
safely supported using existential types [7].

Existential quantification of owners allows the programmer to
specify that an owner is unknown (for example, ∃o.o:Record de-
notes objects of class Record with an unknown owner). A vari-

2 Languages can safely support variance with special mechanisms such as
Scala’s variance annotations or Java wildcards.

able with such an existential type can store objects with any owner,
but the system is sound because once the owner is ‘forgotten’ (by
storing in a variable with quantified type) it cannot be recovered
(assignment back into a variable with a specific owner is forbid-
den). Bounds on quantified variables can be used to represent par-
tial knowledge about owners.

2.2 Multiple Ownership and MOJO
Although ownership types bring many benefits, they are often too
restrictive for common use. Much of the research on ownership
types has focused on making more flexible systems; however,
nearly all systems are limited to a hierarchical structure. This is
not good enough for many programming patterns: Mitchell [24]
found that “more than 75%” of his sample programs which had an
ownership structure could not be described using a simple owner-
ship tree. Multiple ownership [9] lifts the restriction of hierarchies:
by allowing objects to have multiple owners, the heap can be de-
scribed as a directed acyclic graph (DAG).

Figure 1. An object owned by two owners.

If an object is owned by multiple objects then we imagine that
it is in the intersection (as in standard set theory) of those objects’
contexts. We write a∩b:Record for the type of records owned
by a and b. This situation is represented in Fig. 1. Using such
intersections, a sound multiple ownership graph can be used to
denote effects in the same way as regular ownership. In MOJO, any
number of contexts (including zero) may be intersected together to
make a single context.

Here is an example which we will extend as we go along3:

class Doctor {
this:List<this∩?:Record> recordList;

}

class Record {
?:Patient p;
this:Object data;

}
A Doctor shares ownership over the records of the patients

she treats with other unknown objects, possibly other doctors who
treat each patient. In the Record class the owner of patient p is
unknown and is represented with a wildcard (quantified context).
Since a patient may be treated by one or many doctors and the other

3 The example uses MOJO’s less expressive wildcard notation, rather than
the explicit quantification we present in Mojojojo.



owners are unknown, a patient is owned by ‘this’ intersected with
another wildcard. Given this type, the first two additions are legal,
the second two illegal (neither include doc in the owner):

hospital:Doctor doc = new hospital:Doctor();
doc.recordList.add(new doc:Record());
doc.recordList.add(

new (doc∩otherDoc∩anotherDoc):Record());
//doc.recordList.add(new ∅:Record());
//doc.recordList.add(
// new (otherDoc∩anotherDoc):Record());

In order to support multiple ownership, the type system needs
a little more information from the programmer about contexts. The
programmer must specify which combinations of contexts may in-
tersect, which are known to be disjoint, and which are neither. If
two contexts are declared to intersect, then their intersection can
be used as a context parameter; if two contexts are not known to
intersect, then their intersection cannot be used as a context param-
eter. Disjointness information is used to calculate which effects are
disjoint.

Although MOJO is a useful improvement over standard, single-
owner ownership types it has several flaws: its support for variant
types is restrictive and means that classes can not be agnostic as
to whether they support single or multiple ownership, there is no
support for ownership-based encapsulation, and the formalisation
is complex.

3. An Informal Meeting with Mojojojo
The hobo formerly known as MOJO is no mo’. From this
day forward, I shall be known as Mojojojo!

In this section we explain the key features of Mojojojo: flex-
ible and expressive constraints on multiple-ownership topologies;
and combining existential quantification of owners with type para-
metricity in the multiple ownership context.

3.1 Topological Constraints
A box is the abstraction of a group of objects. The heap is structured
by putting all objects into boxes. A box may be associated with
an object (the owner) or composed of other boxes. If a and b are
variables in our program, we use a and b to denote the boxes
they own. In Mojojojo (as in MOJO), we can write a ∩ b for the
intersection of the two boxes; objects in the box a ∩ b are owned
by both a and b. MOJO allowed the intersecting together of many
boxes, we only allow the intersection of two boxes, but since each
box may in turn be an intersection, we are as expressive (and closer
to set algebra).

We also allow taking the union of boxes; e.g., a∪b or a∩(b∪c).
In MOJO, unions are present in effects, but not in the source code.
Our approach is therefore more expressive and more uniform than
MOJO.

In our patient records example we could write a type such as:

doc1∪(doc2∪doc3):Record
to indicate the record for a patient treated by either of three doctors
(perhaps in a busy emergency ward).

In Mojojojo, constraints express the relationships between
boxes. In MOJO, the programmer could specify that boxes may
overlap or were known to be disjoint. In Mojojojo we use constraint
notation: a ∩ b 6= ∅ and a ∩ b = ∅, respectively. Our constraints
extend easily to unions and compound boxes. These constraints are
constraints on the topology of boxes, not on objects; therefore, they
do not guarantee that an object is present in any particular box,
only that it is allowed. Mojojojo also allows the specification of

constraints to describe whether boxes are inside or outside another
box. These constraints are familiar from other ownership systems
[10, 11]; in Mojojojo, they are described in terms of sub-boxing
(c.f., subsets): a ⊆ b. Our constraint system is equipped with the
usual rules of set algebra and therefore deals consistently with these
different kinds of constraint.

We consider the very close relationship with standard set theory
to be one of the important improvements of Mojojojo over MOJO
and other ownership systems.

The relationship between ownership and set algebra based con-
straints is not always intuitive. For example, does a ‘inside’ b imply
that a intersects b? In most ownership systems an object in a is not
considered to be in b [10]. This suggests the intersection should be
considered empty. However, our constraints describe the ownership
topology itself, not how objects are located within this topology.
Our topological rules follow set theory and the intersection of a
and b, in this instance, is considered non-empty.

Similarly to other ownership systems, object ownership is in-
variant with respect to the topological inside relation; that is, an
object in a is not also in b. Furthermore, an object inside a∩b is not
also in b, independent of the relation between a and b.

3.2 Generics and Existential Owners
We expect that variant owners (owners which can vary with sub-
typing) will be used more under multiple ownership than single
ownership. A common use is to refer to a multiply-owned object
by a known and unknown owner, for example, this∩?:C (using
MOJO-like syntax). In MOJO, these unknown owners are denoted
with a wildcard ?. Unfortunately, this syntax has some drawbacks:
classes cannot be polymorphic in the variance of their owners (for
example, a list of objects with known owners must have a sepa-
rate class definition from a list of objects with partially known (or
unknown) owners [9]) and bounds cannot be given for ?4.

In Jo∃ [7], existential quantification of owners is used to rep-
resent unknown and variant contexts. We adapt this quantification
to multiple owners. In Mojojojo, we quantify boxes, so an existen-
tially quantified owner might hide a combination of contexts. Fur-
thermore, the inside/outside bounds on the traditional single own-
ership hierarchy are not flexible enough for the DAGs of multiple
ownership; instead, we use constraints in existential types. Con-
straints take the place of bounds, describing where a quantified con-
text appears in the DAG.

A benefit of existential quantification is that our formalisation is
very clean. The well-known concepts [28] of packing and unpack-
ing are used implicitly5 to implement the restricted access to quan-
tified variables. In MOJO, the same restrictions required a complex
system of strict lookups and ad hoc type transformations (see [6]
for a technical comparison of these approaches).

In our running example, we could add the following constraints
to the existential type of the record to ensure that only objects which
are inside the current object’s owner may share in owning each
record, and that these other objects must be allowed to overlap with
the current object:

this:List<∃o;(o⊆owner,o∩this 6=∅).(this∩o):Record>
recordList;

We add generics (parametric types) to Mojojojo, not for the
usual benefits of more precise and flexible types (although these
are welcome), but because, by combining generics with existential

4 The second problem could be remedied by allowing bounds on ? (as in
Java wildcards).
5 Implicit packing and unpacking follows recent formalisations of Java
wildcards [8], and contrasts with explicit packing and unpacking in tradi-
tional existential types formalisations [23].



quantification, our classes are variance-polymorphic. The result of
this is that class declarations for single and multiple ownership sys-
tems are identical and therefore classes written for single ownership
can be reused in Mojojojo.

Given the List class declaration in Sect. 2, we can write the
following types (in each case, the list itself is owned by a):

a:List<this:Record> list of records owned by this
∃o.a:List<o:Record> list of records owned by

a single unknown owner
a:List<∃o.o:Record> list of records owned by

different owners
In MOJO, we would need two list classes, one which handled

the first case and one which handled the third; the second case could
not be encoded at all.

4. Formalisation
The way I communicate is much different. I do not reiterate,
repeat, and reinstate the same thing over and over again. I
am clear, concise, to the point!

In this section we present our formalisation of Mojojojo, a
calculus in the tradition of Featherweight Java [17]. For the sake
of simplicity (and since it is orthogonal to ownership), we do not
support inheritance.

Q ::= class C<X C> {T f; M} class declarations
M ::= T m(T x) C {return e;} method declarations

a ::= γ | world | ∅ | T.owner contexts
b ::= a | b ∩ b | b ∪ b boxes
r ::= ι | r ∩ r | r ∪ r runtime boxes

C ::= b ⊆ b | b = ∅ | b 6= ∅ constraints
N ::= b:C<T> class types
T ::= ∃∅;∅.X | ∃o;C.N | > types

R ::= ∃∅;∅.r:C<T> runtime types

e ::= null | γ | γ.f | γ.f = e | γ.m(e) expressions
| new b:C<T> | err

v ::= null | ι values

γ ::= x | ι expression variables and addresses
Γ ::= γ:T environments
∆ ::= C constraint environments

H ::= ι → {N, f→v} heaps

x,o,owner, this variables
X type variables
f field names
m method names
C class names

Figure 2. Syntax of Mojojojo.

We present the syntax for Mojojojo in Fig. 2. Constraints (C)
in class declarations and existential types are associated with for-
mal context variables (o). All class types are generic and existen-
tial. Non-existential types can be simulated by quantifying with the
empty set of variables and constraints. Type variables (X) are al-
ways quantified by empty lists of variables and constraints; they
are quantified for consistency with class types. We use a top type
(>) for variables that are only used as owners and are, therefore,

not associated with a type. Syntax in grey cannot be written by the
programmer and is used to represent running programs.

Our judgements are decided under three environments: Γ maps
variables to their types, ∆ stores the current constraints on contexts,
and X is a list of type variables currently in scope (we do not support
bounds on type variables). Variables in Γ may be either expression
variables (x) or context variables (o, which always have type >);
the latter only appear as a result of unpacking existential types,
and are not used in expressions. There is, however, no syntactic
distinction between x and o. At runtime, Γ maps addresses (ι) to
their types.

Mojojojo is not Turing complete, for example, conditionals can-
not be encoded because we do not support inheritance or first class
functions. Mojojojo is proposed as a formalisation of the interest-
ing aspects of a multiple ownership language: we do not propose
anyone try to program with it, therefore Turing completeness is not
important. Type safety is an orthogonal question to Turing com-
pleteness, so is not affected.

Sub-boxes: ∆;Γ; X ` b ⊆ b

∆;Γ; X ` b ⊆ b
(B-REFLEX)

∆;Γ; X ` b ⊆ world
(B-TOP)

∆;Γ; X ` b1 ⊆ b2

∆;Γ; X ` b2 ⊆ b3

∆;Γ; X ` b1 ⊆ b3

(B-TRANS)

b1 ⊆ b2 ∈ ∆

∆;Γ; X ` b1 ⊆ b2

(B-ENV)

∆;Γ; X ` b1 ⊆ b1 ∪ b2

(B-JOIN-1)

∆;Γ; X ` b1 ⊆ b3

∆;Γ; X ` b2 ⊆ b3

∆;Γ; X ` b1 ∪ b2 ⊆ b3

(B-JOIN-2)

∆;Γ; X ` b1 ∩ b2 ⊆ b1

(B-MEET-1)

∆;Γ; X ` b1 ⊆ b2

∆;Γ; X ` b1 ⊆ b3

∆;Γ; X ` b1 ⊆ b2 ∩ b3

(B-MEET-2)

Γ(γ) = b:C<T>

∆;Γ; X ` γ ⊆ b
(B-OWNER)

∆;Γ; X ` ∅ ⊆ b
(B-EMPTY)

Equalities: b = b

b1 ∩ b2 = b2 ∩ b1 EQ-COMM-I
b1 ∪ b2 = b2 ∪ b1 EQ-COMM-U
b1 ∩ (b2 ∩ b3) = (b1 ∩ b2) ∩ b3 EQ-ASSOC-I
b1 ∪ (b2 ∪ b3) = (b1 ∪ b2) ∪ b3 EQ-ASSOC-U
b1 ∩ (b2 ∪ b3) = (b1 ∩ b2) ∪ (b1 ∩ b3) EQ-DISTRIB-I
b1 ∪ (b2 ∩ b3) = (b1 ∪ b2) ∩ (b1 ∪ b3) EQ-DISTRIB-U
b ∩ world = b EQ-ID-I
b ∪ ∅ = b EQ-ID-U
b ∩ b = b EQ-IDEM-I
b ∪ b = b EQ-IDEM-U
b ∩ ∅ = ∅ EQ-DOM-I
b ∪ world = world EQ-DOM-U
b1 ∩ (b1 ∪ b2) = b1 EQ-ABS-I
b1 ∪ (b1 ∩ b2) = b1 EQ-ABS-U
b:C<T>.owner = b EQ-OWNER

Figure 3. Mojojojo sub-boxing and equalities between boxes.



Valid constraints: ∆;Γ; X |= C

C ∈ ∆

∆;Γ; X |= C
(C-ENV)

∆; Γ; X |= C′ C′ = C
∆; Γ; X |= C

(C-EQ)

∆;Γ; X |= b′ = ∅
∆;Γ; X ` b ⊆ b′

∆;Γ; X |= b = ∅
(C-SB-E)

∆;Γ; X |= b′ 6= ∅
∆;Γ; X ` b′ ⊆ b

∆;Γ; X |= b 6= ∅
(C-SB-NE)

∆;Γ; X ` b1 ⊆ b2

∆;Γ; X |= b1 ⊆ b2

(C-SB)

Figure 4. Mojojojo valid constraints.

Subtyping: ∆;Γ; X ` T <: T

∆;Γ; X ` T <: T
(S-REFLEX)

∆;Γ; X ` T <: >
(S-TOP)

o∩fv(∃o′;C′.N)= ∅
∆, C; Γ, o:>; X |= [b/o′]C′

∆;Γ; X ` ∃o;C.[b/o′]N <: ∃o′;C′.N
(S-ENV)

Figure 5. Mojojojo subtyping.

We define well-formedness judgements for Mojojojo in Fig. 6.
These define well-formed types, contexts, constraints, and heaps.
Each checks that variables are correctly bound, constraints are
satisfied where appropriate (the equivalent of bounds checking),
and named classes are declared in the program.

In Fig. 3 we define sub-box and equality relations between
boxes. These rules follow directly from set theory, sub-boxing
corresponds to the subset relation. We add rules B-ENV and B-
OWNER to sub-boxing to take into account relations declared by
the programmer, and that object’s contexts are within their owner’s
context.

A key concept in Mojojojo is the constraint (C). Constraints
may be assumed within the body of the class, method, or unpacked
scope, and must be satisfied when the class is instantiated, method
invoked, or existential type packed.

Constraints are established to be valid using the rules in Fig. 4.
These rules describe how topological constraints can be found
valid using the sub-box and equality rules, declarations, and some
intuitive notions about these constraints. Note that for a box to be
judged equal or not equal to the empty set (e.g., ∆;Γ; X |= a = ∅)
is a different concept than box-equality (e.g., a = ∅). The former
concept means that the constraint a = ∅ can be proved under a
given set of environments, the latter means that a = ∅ under all
environments, derived using the ‘set equality’ rules in Fig. 3. Also,
a valid constraint is not necessarily well-formed, or vice-versa.
Well-formedness is a purely syntactic judgement, which checks
mainly that component variables are in scope; whereas validity is a
semantic judgement which checks that the constraint can be proved
from the relevant environments.

Subtyping is defined in Fig. 5; since we do not support sub-
classing, the only interesting part is handling existential types.
We use an ENV rule, taken from formalisations of Java wildcards
[22]. This rule allows introduction of existential types (packing),
and partial abstraction of existential types (corresponding to co-

Well-formed boxes: ∆;Γ; X ` b OK

Γ(γ) 6= X

∆;Γ; X ` γ OK
(F-VAR)

∆;Γ; X ` world OK
(F-WORLD)

∆;Γ; X ` ∅ OK
(F-EMPTY)

∆;Γ; X ` T OK

∆;Γ; X ` T.owner OK
(F-TOWNER)

∆;Γ; X ` b OK
∆;Γ; X ` b′ OK

∆;Γ; X |= b ∩ b′ 6= ∅
∆;Γ; X ` b ∩ b′ OK

(F-INTERSECT)

∆;Γ; X ` b OK
∆;Γ; X ` b′ OK

∆;Γ; X ` b ∪ b′ OK
(F-UNION)

Well-formed types: ∆;Γ; X ` T OK

X ∈ X

∆;Γ; X ` X OK
(F-TYPE-VAR)

Γ′ = Γ,o:>
∆, C; Γ′; X ` N OK

∆, C; Γ′; X ` C OK

∆;Γ; X ` ∃o;C.N OK
(F-EXISTS)

class C<Y C> ...

∆;Γ; X ` T OK ∆;Γ; X ` b OK

∆;Γ, this:b:C<T>; X |= [b/owner,T/Y]C
∆;Γ; X ` b:C<T> OK

(F-CLASS)

Well-formed constraints: ∆;Γ; X ` C OK

∆;Γ; X ` b OK

∆;Γ; X ` b = ∅ OK
(F-EQ)

∆;Γ; X ` b OK

∆;Γ; X ` b 6= ∅ OK
(F-NEQ)

∆;Γ; X ` b1 OK ∆;Γ; X ` b2 OK

∆; Γ; X ` b1 ⊆ b2 OK
(F-SUB)

Well-formed heap: ` H OK

∀ι → {N ; f→v} ∈ H :

H ` N OK fType(f, N) = T ′ H ` v : [ι/this]T ′

∀v ∈ v : v 6= null⇒ v ∈ dom(H)
` H OK

(F-HEAP)

Figure 6. Mojojojo well-formed contexts, types, and heap.

and contravariant changes to bounds in traditional existential types
systems). In Mojojojo, strictness of bounds is indicated by the set
of constraints in the subtype being stronger than (that is, can prove
valid) the set of constraints in the supertype. The fv function returns
the set of free variables in a type.

Expression typing is defined in Fig. 8. In T-FIELD, T-ASSIGN,
and T-INVK the type of the receiver is unpacked before performing
field or method lookup. The resulting type may contain free vari-
ables, and if this type forms part of the conclusion, then it must
be packed to prevent free variable escape. Packing is done using
the ⇓ (close) operation (defined in Fig. 7): variables and constraints
to be packed (o and C in ⇓o;C) are added to those quantifying a



class C<X C> {U f; M}
fields(C) = f

class C<X C> {U f; M}
fType(fi, b:C<T>) = [b/owner,T/X]U i

class C<X C> {U f; M}
T m(T ′ x) C′′ {return e;} ∈ M

mBody(m,b:C<T>) = (x; [b/owner,T/X]e)

class C<X C> {U ′ f; M}
T m(T ′ x) C′′ {return e;} ∈ M

mType(m,b:C<U>) = [b/owner,U/X](C′′.T ′ → T )

⇓o;C ∃∅; ∅.X = ∃∅; ∅.X

⇓o;C ∃o′; C′.N = ∃o, o′; C, C′.N

⇓o;C > = >

Figure 7. Auxiliary functions for Mojojojo.

Expression typing: ∆;Γ; X ` e : T

∆;Γ; X ` N OK

∆;Γ; X ` new N : N
(T-NEW)

∆;Γ; X ` γ : Γ(γ)
(T-VAR)

∆;Γ; X ` T OK

∆;Γ; X ` null : T
(T-NULL)

∆;Γ; X ` γ : ∃o;C.b:C<T>
fType(f, b:C<T>) = T

∆;Γ; X ` γ.f :⇓o;C,γ⊆b [γ/this]T
(T-FIELD)

∆;Γ; X ` γ : ∃o; C.b:C<T> fType(f, b:C<T>) = T ′

∆;Γ; X ` e : T ∆, C, γ ⊆ b; Γ, o:>; X ` T <: [γ/this]T ′

∆;Γ; X ` γ.f = e : T
(T-ASSIGN)

∆;Γ; X ` γ : ∃o; C.b:C<T> ∆;Γ; X ` e : T ′′

mType(m, b:C<T>) = C′.T ′ → T
∆, C, γ ⊆ b; Γ, o:>; X ` T ′′ <: [γ/this]T ′

∆, C, γ ⊆ b; Γ, o:>; X |= [γ/this]C′
∆;Γ; X ` γ.m(e) :⇓o;C,γ⊆b [γ/this]T

(T-INVK)

∆;Γ; X ` e : T ′

∆;Γ; X ` T ′ <: T ∆;Γ; X ` T OK

∆;Γ; X ` e : T
(T-SUBS)

Figure 8. Mojojojo expression typing rules.

class type or ignored in the case of type variables (type variables
have no free expression variables). In the premises of the type rules
(intuitively, between unpacking and repacking) we must be careful
to use correct, enlarged environments which include the unpacked
context variables. Ownership types are dependent types and this

Γ = owner:>, this : owner:C<X>
this 6= ∅, C; Γ; X ` T , M OK this 6= ∅; Γ; X ` C OK

this 6= ∅, C; Γ; X 6|= ∅ 6= ∅
` class C<X C> {T f; M} OK

(T-CLASS)

Γ′ = Γ, x:T ′ ∆′ = ∆, C
∆′; Γ; X ` T, T ′ OK ∆′; Γ′; X ` e : T

∆′Γ; X 6|= ∅ 6= ∅ ∆;Γ; X ` C OK

∆;Γ; X ` Tm(T ′ x) C {return e;} OK
(T-METHOD)

Figure 9. Mojojojo typing rules for classes and methods.

can be used in types, constructing runtime types involves substi-
tuting the receiver for this in types, thus we restrict receviers to
be variables. This is not a practicle problem because methods can
be used like let expressions to assign any expression to a variable,
which can then be used as receiver.

Type rules for methods and classes are given in Fig. 9. Declared
constraints must be consistent as well as being well-formed. Con-
sistency is checked by requiring that the empty set cannot be proved
not equal to itself (in both T-CLASS and T-METHOD); essentially
‘false’ cannot be proved.

Mojojojo has a standard, large step semantics; we relegate it,
and rules for type checking at runtime; to the appendix. We use
large steps because in the version of Mojojojo with permissions
and effects we need to model a stack, this is not needed in the
presentation in this paper, but we keep the same semantics.

4.1 Properties of Mojojojo
We have proved the subject reduction theorem for Mojojojo:

Theorem: subject reduction
For all H, H’, e, v, and T , if H ` e : T and e;H ; v;H′
and ` H OK then H′ ` v : T and ` H′ OK.

The proof proceeds in a standard manner by structural induction
over the derivation of reductions. We have a large number of lem-
mas, most of them standard for such systems (see for example,
[9, 6, 7]). We state and discuss some of the interesting lemmas be-
low. Subject reduction shows that reduction preserves types, that is
an expression cannot change type as it executes (upto subtyping).
In ownership terms, since we have proved preservation, we can be
sure that the owners described by the static types in our language
reflect the actual heap at runtime. This is a necessary condition for
supporting an effect system or any prescriptive property. Rules for
using the heap as an environment (thereby allowing the static type
rules to judge runtime expressions) are given in the appendix.

Lemma: strengthening (type checking) For all ∆, Γ, X,
e, T , and C, if ∆, C; Γ; X ` e : T and ∆;Γ; X |= C then
∆;Γ; X ` e : T

We use a system of constraints rather than bounds on variables,
this causes several differences in the statement of lemmas (see be-
low) and the overall shape of our proofs. One of the nice properties
of our system is strengthening: if a constraint can be proved by an
environment, then it can be removed from that environment when
proving judgements. We give the strengthening lemma for the type
checking judgement above, lemmas for the other judgements are
similar.

Lemma: box substitution preserves type checking For
all ∆, Γ, X, e, T , b, o, and C, if ∆, C; Γ, o:>; X ` e :



T and ∆;Γ; X ` b OK and ∆;Γ; X |= [b/o]C then
[b/o]∆; [b/o]Γ; X ` [b/o]e : [b/o]T

We prove lemmas for the substitution of types for type vari-
ables, values for expressions variables, and boxes for expression
variables; we prove a preservation lemma for each judgement for
each kind of substitution. The substitution lemmas for types and
values are standard. The lemmas for boxes are more interesting
because the variables being replaced do not have bounds but are
subject to constraints. Our lemma therefore requires that the con-
straints associated with o can be satisfied, rather than the bounds of
o.

Lemma: closing preserves well-formedness For all ∆, Γ,
X, T , o, and C, if ∆, C; Γ, o:>; X ` T OK and ∆, C; Γ, o:>; X `
C OK then ∆;Γ; X `⇓o;C T OK

Lemma: closing gives subtypes For all ∆, Γ, X, T , b, o, and
C, if ∆;Γ; X |= [b/o]C then ∆;Γ; X ` [b/o]T <:⇓o;C T

In Mojojojo, we introduce existential quantification using the ⇓
operator. We must account for closing in our proofs and this is done
(in part) by the above two lemmas. The first shows that closing
preserves the well-formedness of types it operates on. The second
shows how closing fits with subtyping: closing and the S-ENV
subtyping rule are compliments, they introduce existential types in
the same way, this lemma formalises that connection.

5. Towards Effects and Permissions
Mojojojo’s ownership types (described in the earlier sections) are
purely descriptive. To be useful, an underlying descriptive owner-
ship type system must support an effect system or some prescrip-
tive policy such as owners-as-dominators or owners-as-modifiers.
These policies restrict the objects that can be referenced or mod-
ified, according to their position in the ownership hierarchy. Al-
though a descriptive system prevents the programmer confusing
objects in different contexts (e.g., a value with type a:C cannot be
stored in a variable with type b:C), the benefits usually associated
with ownership types are not accorded by a descriptive system. In
this section, we explore effects and permissions for Mojojojo; the
latter as a generalisation of encapsulation policies.

5.1 An Effect System for Mojojojo
MOJO [9] supported an effect system for multiple ownership; we
have designed a similar effect system for Mojojojo. We do not
include the formal specification of the effect system in this paper
because it is work in progress.

As is standard [11], an effect consists of the region of the
heap affected and the kind of effect: read, write, or reference6.
We use boxes (b, in the formal syntax) to denote the region of the
heap affected. Thus, our effects benefit from the same expressivity
as the type system. Methods must be annotated with effects by
the programmer and are inferred for all expressions. The most
interesting aspect of the effect system is that in T-INVK, we must
account for unpacked variables in effects. Unpacked variables are
treated in the same way as in types, by performing a close operation
(using ⇓). We use the following rule to close boxes (and thus
effects), the conclusion should be read as using ∆; Γ; X to judge
the closing operationto b; the result of closing is b′:

∆;Γ; X ` b ⊆ b′

fv(b′) ∩ o = ∅
∆;Γ; X `⇓o;C b = b′

6 We have added a reference effect which describes which objects are refer-
enced during execution; this should be useful for aiding memory manage-
ment.

The close operator finds a o-free super-box of b. If b describes
an effect, then b′ describes a larger effect which does not include
unpacked variables. Our effect system is thus safe and conservative
in the presence of existential quantification of ownership variables.
This rule works in the same way as finding a closed supertype of a
type variable in systems with existential types [6].

MOJO’s effect system, in contrast, uses wildcard owners di-
rectly in effects. The equivalent in Mojojojo would be to allow ex-
istential quantification in effects. We found that this approach did
not improve expressivity, but did complicate the formal system.

As in MOJO, we can predict the disjointness of expressions if
their effects do not overlap. This information could then be used to
automatically parallelise expressions [4].

5.2 Policies

Figure 10. Links in owners-as- policies.

The most common encapsulation policies (owners-as-domin-
ators and owners-as-modifiers) do not scale straightforwardly to
multiple ownership. These policies ensure that access to (permis-
sion to reference or write) an object is restricted to objects which
(transitively) own or are owned by that object. The key question in
extending these policies to multiple ownership is how shared own-
ership is handled. We must decide what makes an ‘owner’ in terms
of owners-as- policies. There are two choices: either an object must
have exclusive ownership over an object (by being the only direct
owner, or transitively owning all owners, the solid lines in Fig. 10)
or shared ownership is good enough (the dashed lines in Fig. 10).
We need to allow access to the object in the intersection from some-
where, and should probably forbid access along the dotted lines.

We must also consider the arguments from two sides: is the pol-
icy strict enough to be useful, and is it permissive enough to be
useful. Requiring exclusive ownership means that an object cannot
access objects it partially owns, and, since a common pattern in
our examples (see Sect. 3.2) is for an object to have partial owner-
ship over its fields shared with an unknown (existential) owner, this
may well be too restrictive. Allowing shared ownership, however,
means that the compiler cannot easily reason about access because
there may be other (unknown) objects with access. In short, there is
no easy answer; we have experimented with systems which require
different levels of exclusivity of ownership depending on the direc-
tion of reference (inward v. outward), and these appear promising.
However, we delay these design decisions and, in Mojojojo, we are



investigating a more precise system of permissions with the aim of
encoding any of these policies.

5.3 Permissions
Permissions are, in a sense, the dual of effects: an effect describes
what has been done, and a permission describes what may be done.
An achievement of Mojojojo is that we use the same language for
both permissions and effects; however, the fit is not perfect. The
major difference is that with permissions, we care who is doing
the action (e.g., a may be allowed to modify b, but c may not be),
whereas the subject is irrelevant for effects. In terms of checking,
effect and permission information provide no real overlap.

It would be safe to use a method’s effect to conservatively
estimate if the method can be called for a given receiver and
parameters. However, the estimate is too conservative to be useful
— the effect of a method may be due to any object that can be
named in the method, so it is possible that a method is safe to call
even if it has an effect that the receiver or parameters do not have
permission for. Instead, we use method-level constraints; by using
the method-scoped constraints to check a method, it is always safe
to call that method if we can satisfy its constraints at its call site.
This system is safe and much more precise than using effects, at
the expense of requiring methods to be annotated with both effects
and permissions.

Permissions are added as just another kind of constraint; con-
straints in Mojojojo are therefore not just topological, but describe
all kinds of constraint on a program. By encapsulating permissions
within constraints, different kinds of permissions can be included
without changing the majority of the type system. Permissions on
a class allow boxes of objects to read, write, or reference instantia-
tions of that class. Permissions may also be given per-method, these
are permissions which have to be satisfied at the call site. Permis-
sion constraints may also be present in existential types, in which
case they must be satisfied by the hidden witness contexts.

We define the syntax of permissions as:

p ::= rd | wr | rf permission kinds
vb ::= b | b5 | b4 variant boxes
P ::= vb p b permissions

C ::= ... | P constraints

For example, a rd b means that all objects in box a may
read object b. The use of variant boxes in permissions allows the
programmer to specify that not only a specific object, but any
object in a sub- or super-box (using b5or b4, respectively) has a
permission; for example, a5 includes a, a ∩ b, and a ∩ c, and a4

includes a ∪ b and the owner of a.
As opposed to other common encapsulation policies, permis-

sions do not propagate up or down the ownership graph. For exam-
ple, just because object a has permission to access object b, objects
owned by a do not automatically have permission to access b. The
programmer can always add more permissions, or a pre-processing
step could enforce a policy by adding propagated permissions.

A key difference between effects and permissions is that effects
support a form of subsumption, but permissions do not. We could
adopt such a scheme for permissions; however, it would limit the
encapsulation policies we could encode (we could support owners-
as-modifiers, where permission to modify an object implies per-
mission to modify its owners, but not owners-as-dominators, where
permission to reference an object implies permission to reference
the objects it owns).

Checking of permissions in the type rules is done implicitly,
by checking that class and method level constraints are satisfied in

T-NEW (via F-CLASS) and T-INVK, respectively. Our constraint
satisfaction rules must expand to accommodate checking of per-
missions, including accounting for variant boxes, and rules to al-
low an object complete access to itself and its owner. At runtime,
our semantics must keep track of the current object (this) in or-
der to type check expressions at intermediate reduction steps; this
motivates our use of large-step semantics.

6. Discussion and Future Work
In this paper, we have described and formalised an expressive core
language; however, this is a long way from a practically usable
programming system. Mojojojo’s ownership and permission anno-
tations are unwieldy: even simple programming tasks will require
complicated types and constraints. We expect that this can be al-
leviated by choosing sensible defaults, and administering a dose
of syntactic sugar. Alternatively, a compiler could infer ownership
information and/or effects, using Mojojojo as its internal represen-
tation, where there is no requirement for concise and readable code.

Existential types in particular are awkward to write and can
be replaced either with variance annotations [18] or a wildcards-
like syntax [22]. Topological constraints could be described using
keywords, such as ‘intersects’, ‘disjoint’, and ‘inside’, as in MOJO
and other ownership systems [9, 12] rather than their underlying
set theoretic expressions. Permissions have the most scope for
eliminating verbosity, because many fiddly permissions can be
described by a single policy definition which can apply across many
classes and/or boxes.

We expect that Mojojojo’s full expressiveness will only be re-
quired in particular parts of some applications: in most cases, care-
fully chosen defaults and inference should suffice. In particular, we
believe that reusable policies (grouping together topological con-
straints and permissions) have great potential to reduce syntactic
overhead. Owners-as-modifiers, to take one example, is a policy
where an object “can only be read or written by a partial, transi-
tive owner” [26, 14]. Policies will need to be tailored to capture
common usage, such as enforcing design-level encapsulation con-
straints, or managing memory use. The exact formulation of poli-
cies is out of the scope of this paper: a key advantage of Mojojojo is
that it can support more than one ownership policy. Mojojojo pro-
grams can even use different policies in different places, simply by
configuring permissions to implement those policies.

Future work The work presented in this paper forms a complete
descriptive ownership system. It is also a work-in-progress snap-
shot of a system on its way to supporting not only flexible topolo-
gies, but also flexible modes of encapsulation in a similarly general
manner. To achieve this goal, we require progress in the effects
and permissions systems. The former is mostly complete; only the
proofs remain (and we do not anticipate any major hurdles there).
More work is required on permissions: here, we have the skeleton
of a system, but must ensure that it is safe and useful. Safety is
to be established by proof, and we expect that changes to our sys-
tem may be necessary to achieve this. To make permissions useful
they must be flexible and reflect actual programming practice. We
are confident our permissions are flexible, but currently they are
too fine-grained to be useful to a programmer. As described above,
we wish to present a programmer-directed abstraction layer on top
of our permission system, perhaps reflecting one of the existing
ownership-based encapsulation policies. To show that our permis-
sions system does indeed match with programming practice we will
perform empirical studies.

7. Related Work
For we are kindred spirits whose powers spring from the
same source.



We have described the fundamental ownership concepts in
Sect. 2. In this section we describe some systems that seek to
achieve the same goals as ours: more flexible ownership and more
precise encapsulation properties.

Ownership Domains [2] make ownership hierarchies more flexi-
ble by allowing multiple boxes (in Mojojojo terms) per owner. This
is the complement of multiple ownership, which allows multiple
owners per box. Both approaches have advantages and the systems
could easily be combined to make an even more flexible ownership
topology7.

The encapsulation property of Ownership Domains is link
soundness, which is a generalisation of owners-as-dominators.
Links between domains are declared by the programmer, and ref-
erences may only follow these links. Our permissions system is
a generalisation of these links as we extend them to reading and
writing as well references.

An alternative to more flexible ownership systems is to drop the
notion of ownership altogether and focus on the object invariants
themselves. There is a large body of work on object invariants,
Summers et. al. [31] surveys much of it and gives examples of
object graphs that cannot be described using ownership hierarchies.

DPJ [4] divides the heap into a topology of regions. Regions
may overlap and be nested and so topologies of similar expressive-
ness to our own can be described. A mixture of explicit annotations
and paths are used to describe the topology (as opposed to owner-
ship annotations). An expressive language of effects is layered on
top of these regions. This can express effects for arrays and sub-
arrays of regions, and for unions of regions, but does not support
unknown or partially known regions. DPJ has an ‘invokes’ effect,
but no ‘references’ effect; we are investigating adding ‘invokes’ ef-
fects and permissions into Mojojojo.

A different approach to parallelisation is proposed by Strok et
al. [30]. Here, access permissions [3] (similar to fractional permis-
sions, described below, and altogether different from our permis-
sions) are used instead of effects to reason about which statements
can be parallelised or re-ordered.

Our permissions are similar to access control lists for file sys-
tems. Role-based access control is a similar concept which has been
enhanced to be an object-sensitive part of the type system [15]; to
the best of our knowledge, this is the closest work to ours, although
permissions are given to a role rather than a subset of the heap.
Although they share part of their name, fractional permissions [5]
and similar systems are very different from ours: they are closer to
linear capabilities than they are to access control lists.

8. Conclusion
In this paper, we have presented an ownership type system, Mo-
jojojo, which supports very flexible topologies including multiple
owners. Our formalisation of Mojojojo is simple and general. We
use standard type theoretic tools (existential quantification, gener-
ics) and an elegant system of constraints, based directly on set alge-
bra, to model complex topologies and their variably precise repre-
sentation in types. Furthermore, we have sketched how effects and
permissions can be added to our language; these additions share a
common description language. Permissions are incorporated into
the existing system of constraints, extending it from a description
of a program’s runtime topology, to a description of a program’s
general runtime behaviour.

7 We have not done so here because the two concepts are orthogonal: there
is added complexity, but nothing interesting appears to develop.
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A. Elided figures
H = ι → {N, f→v}

∆, ι 6= ∅; Γ, ι → N ; X ` e : T

H; ∆; Γ; X ` e : T
(T-RUNTIME)

H = ι → {N, f→v}
∆, ι 6= ∅; Γ, ι → N ; X ` T <: T ′

H;∆; Γ; X ` T <: T ′

(S-RUNTIME)

H = ι → {N, f→v}
∆, ι 6= ∅; Γ, ι → N ; X ` T OK

H;∆; Γ; X ` T OK
(F-RUNTIME)

H = ι → {N, f→v}
∆, ι 6= ∅; Γ, ι → N ; X |= C

H;∆; Γ; X |= C
(C-RUNTIME)

Figure 11. Mojojojo runtime rules.

Operational semantics: e;H ; e;H

H(ι) = {R; f→v}
ι.fi;H ; vi;H

(R-FIELD)

H(ι) undefined fields(C) = f

H′ = H, ι → {r:C<T>; f→null}
new r:C<T>;H ; ι;H′

(R-NEW)

H(ι) = {R; f→v}
e;H ; v;H′′

H′ = H′′[ι 7→ {R; f→v[fi 7→ v]}]
ι.fi = e;H ; v;H′

(R-ASSIGN)

H(ι) = {r:C<T>; ...}
e;H ; ι′;H′′

mBody(m, r:C<T>) = (x; e′)
[ι′/x,ι/this]e′;H′′ ; v;H′

ι.m(e);H ; v;H′;
(R-INVK)

e;H ; null;H′
ι.m(e);H ; err;H′;

(R-INVK-NULL)

e;H ; err;H′
ι.fi = e;H ; err;H′

(R-ASSIGN-ERR)

e;H ; err;H′
ι.m(e);H ; err;H′;

(R-INVK-ERR)

Figure 12. Mojojojo reduction rules.


