
Sheep Cloning with Ownership Types

Paley Li
Victoria University of

Wellington
New Zealand

lipale@ecs.vuw.ac.nz

Nicholas Cameron
Mozilla Corporation

ncameron@mozilla.com

James Noble
Victoria University of

Wellington
New Zealand

kjx@ecs.vuw.ac.nz

ABSTRACT
Object-oriented programmers often need to clone objects.
Mainstream languages, such as C# and Java, typically de-
fault to shallow cloning, which copies just one object and
aliases references from that object. Other languages, such
as Eiffel, provide deep cloning. A deep clone is a copy of the
entire object graph reachable from the cloned object, which
could include many unnecessary objects. Alternatively, pro-
grammers can implement their own object cloning functions,
however, this is often difficult and error prone.

Sheep Cloning is an automated cloning technique which uses
ownership information to provide the benefits of both shal-
low and deep cloning without the costs. We describe, for-
malise, and prove soundness of Sheep Cloning in a minimal
object-oriented calculus with ownership types.

Categories and Subject Descriptors
D.3.3 [Software]: Programming Languages—Language Co-
nstructs and Features

General Terms
Languages

Keywords
Ownership types, object cloning, type system

1. INTRODUCTION
Traditional object cloning techniques produce clones using
either shallow cloning or deep cloning. In Java, an object can
be shallow cloned by calling its clone() method, provided
its class implements the Cloneable interface. A similar ap-
proach is taken in C# where the object’s class is required to
implement the ICloneable interface. To create deep clones
in Java, programmers would need to overwrite the object’s
clone() method with an implementation of deep cloning
themselves. This task is often daunting and challenging.

There are cases when it is not obvious which cloning tech-
nique would produce the more suitable clone, and there are
even cases when neither technique is suitable. In all of these
cases, languages tend to offer little support, forcing program-
mers to design and implement a custom cloning implemen-
tation themselves.

Ownership types enforce the heap into a hierarchically struc-
tured, by introducing an owner object for every object [10].
The term context is used to mean the formal set of objects
owned by an object, and the term representation means
the set of objects which are conceptually part of an object,
therefore ownership types help describe an object’s repre-
sentation. Prescriptive ownership policies, like owners-as-
dominators, can be incorporated on top of descriptive own-
ership types. The owners-as-dominators policy [7] ensures
an object’s representation can never be exposed outside of
its enclosing owner, by forcing all reference paths to an ob-
ject to pass through that object’s owner.

Sheep Cloning [21] is an intuitive and automated ownership-
based cloning technique. Sheep cloning clones the object’s
representation by copying an object’s context and aliases
the reachable objects not owned the object. The owners-as-
dominators policy and the hierarchical structure of the heap
are key in constructing Sheep clones. This is because the de-
cision to copy or alias an object is determined by the object’s
owner. A Sheep clone preserves owners-as-dominators and
is structurally equivalent to the object it is a clone of. In this
paper, we describe and formalise Sheep Cloning, prove our
formalism is sound, and present its correctness properties.

The rest of this paper is organized as follows: in Sect. 2
we introduce object cloning and ownership types; in Sect. 3
we introduce Sheep Cloning; in Sect. 4 we describe Sheep
Cloning formally, and show type soundness; in Sect. 5 we
discuss possible future work; in Sect. 6 we discuss related
work; and, in Sect. 7 we conclude.

2. BACKGROUND
Programs today are regularly required to be written defen-
sively under the assumption they will interact with malicious
code. Defensive copying and ownership types [10] are two
mechanisms to reduce the possible harm caused by mali-
cious code. Defensive copying is a programming discipline
that aims to stop malicious code from unexpectedly retain-
ing and mutating objects. This is achieved by requiring all
method calls to pass in clones and for all method returns to

return clones [16]. Ownership types can statically restrict
access to an object’s context, encapsulating the object’s be-
haviour and preventing unexpected mutation of the object.

2.1 Object Cloning
Object cloning is the process of copying objects [2, 22, 1].
Traditionally, there are two object cloning techniques. One
is shallow cloning, which copies the single object to be cloned
and aliases the fields of that object. The other is deep
cloning, which copies the object to be cloned and every ob-
ject reachable from it.

class Window {
Document document;
Database database;

Window(Database database) {
document = new Document(database);
this.database = database;
}
...
}
class Document {
Database database;
...
}

Figure 1: Code of the display window.

In Fig. 1 and Fig. 2, we present an example of a display
window, as code and a diagram respectively. The display
window contains a document and a reference to a database.
The window simply displays the items it retrieves from the
database. The document has a reference to the same datab-
ase as the window. This allows the document to reference
items from the database, independent of window.

Figure 2: Diagram of the display window.

In Fig. 3 and Fig. 4, we present window’s shallow and deep
clone respectively. We intend the clones (windows and wind-
owd) to have the same structure and behaviour as the orig-
inal object (window). Which means the clones should ref-
erence window’s database and they each should have their
own document which also reference that database.

Shallow cloning window creates a new window (windows),
which aliases the document and database of window. windo-
wd is produced by deep cloning window, creating an entirely
new document (documentd) and database (databased). A
reference from documentd to databased is also created.

The shallow clone, windows, does not have the structure of
window. As windows references the same document as win-

dow, any changes to the document would affect both win-

Figure 3: Shallow clone of the display window.

Figure 4: Deep clone of the display window.

dow and windows. Meanwhile, deep cloning copies database,
which can be costly. The deep clone, windowd, also presents
the problem that any changes to database will not be re-
flected in databased, and therefore can not be displayed in
windowd.

2.2 Ownership Types
Ownership types were introduced in 1998 by Clarke et al
[10]. This was followed by a variety of ownership systems,
such as Ownership Domains [3], Universe Types [17, 18],
Ownership with Disjointness of Types and Effects [9], Ex-
ternal Uniqueness [8], and Ownership Generic Java [23]. The
descriptive and/or prescriptive properties of these systems
may differ, but the heap of all of these systems is structured
hierarchically.

An ownership type is constructed from a class name and
a list of owner parameters. In Fig. 5, we present the dis-
play window with ownership types. The ownership type for
a document is this:Document<dbowner>. Document is the
class name of the type, while this and dbowner are the
owner parameters. this being the owner of the document.
The owner this denotes a special owner, the current “this”
object. The window object owns the document object, hence
the owner of the document is this instance of the Window

class. Declaring dbowner as the owner of the database per-
mits the window to refer to the database. dbowner is also
passed to the document, allowing the document to reference
the same database as window. The workings of the owner
parameters will be explained in greater detail in our formal-
ism.

In Fig. 6, we present a diagram of the ownership typed dis-
play window. In this diagram, the boxes denote objects, and
since objects are owners, the boxes are also owners. Objects

class Window<dbowner> {
this:Document<dbowner> document;
dbowner:Database<> database;
...
}
class Document<dbowner> {
dbowner:Database<> database;
...
}

Figure 5: Code of ownership typed display window.

inside a box make up the context of the object that box
represents. The document is owned by window, and there-
fore is inside window, while database is not part of window’s
representation, and therefore is outside window. The dotted
black arrows represents valid references.

Figure 6: Diagram of ownership typed display win-
dow.

Owners-as-dominators, or deep ownership, ensures an ob-
ject’s representation can never be exposed outside its en-
closing context [10, 7]. In practice this means all the refer-
ences from a context must either go to its direct descendant,
i.e., the objects it owns, its siblings, or up its ownership hi-
erarchy. References are allowed up the ownership hierarchy
because these references are pointing to representations that
they are part of. In terms of the boxes, references can always
go out of a box but never into a box. This is shown in Fig. 6.
The document is permitted to reference the database. The
document, however, is not permitted to reference the objects
in the database’s context as shown by the cross on the solid
black arrow. It is important to note that although owner-
ship is transitive. An object can only reference the objects it
owns directly, and never the objects that those objects own.

3. SHEEP CLONING
An ownership-based cloning operation was first proposed by
Noble et al [21] who called this operation Sheep Cloning.
Noble describes how Sheep Cloning clones an ownership-
typed object by copying the objects it owns, while aliasing
the references to external objects it doesn’t own. They then
discuss the need to maintain a map, to prevent objects from
being copied more than once. Finally, they present an exam-
ple where they Sheep clone a Course, which is represented
by a linked list of Students. Sheep Cloning the linked list
copies the nodes of the linked list, while aliasing the Stu-

dents. While Sheep Cloning the Course creates a replica of
the entire linked list, with new copies of the Students.

Sheep Cloning incorporates aspects of both shallow and deep
cloning. Like deep cloning, Sheep Cloning clones an object’s
representation by traversing references and copying every
reachable object inside the context. Like shallow cloning,
Sheep Cloning creates aliases after the essential object(s) is
copied. Unlike deep cloning, however, Sheep Cloning uses
the inside relation of ownership types to determine when it
needs to stop copying, so no unnecessary objects are copied.
Unlike shallow cloning, Sheep Cloning can recreate the entire
representation of an object, instead of just copying a single
object.

Figure 7: Sheep clone of the ownership typed display
window.

In Fig. 7, we present the Sheep clone of the ownership-typed
display window. Sheep Cloning window creates a new win-

dow, windowsp. In windowsp, a copy of document is cre-
ated, documentsp, and documentsp contains a reference to
the database. Finally, an alias of the reference to the datab-
ase is created for windowsp.

The inside relation defines the ownership relation between
two contexts. Sheep Cloning requires two variations of the
same inside relation: a compile-time inside relation that
ensures the owners-as-dominator property at compile-time,
and a run-time inside relation that Sheep Cloning uses to
determine whether to copy or alias an object. If an object
has already been copied, then instead of copying this object
twice, Sheep Cloning uses a map to refer to the copy that
already exists.

Currently, Sheep Cloning requires owners-as-dominators.
Systems with only descriptive ownership do not restrict ac-
cess to an object’s representation, which means there are
objects that can not be reachable (directly or transitivity)
by their owner. This is problematic for Sheep Cloning as
it is expensive to locate every object in an object’s repre-
sentation, as a traversal over the entire heap is required.
Owners-as-dominators guarantees every object inside an ob-
ject’s representation is reachable (directly or transitivity)
from the owner.

4. FORMALISATION
In this section, we present our formalisation of Sheep Cloni-
ng, a calculus in the tradition of Featherweight Java [15].
The aim for our formalism is to present Sheep Cloning as
a language feature that can be implemented in any owner-
ship system that has owners-as-dominators. By formalising
Sheep Cloning with the minimal amount of features it re-
quires, we have lost some aspect of realism in our system,
as our formalism is not Turing complete, since we do not
support inheritance, and therefore cannot formalise condi-
tionals. We have, however, maintained our aim, as most
languages features required for Turing completeness are or-
thogonal to Sheep Cloning. Turing completeness is not re-
quired to show type safety, and we will present soundness of
our formalism in a later section.

4.1 Static System

Q ::= class C<ol�x� ou> {N f; M} class declarations
M ::= N m(N x) {return e;} method declarations

T ::= N | > type
N ::= o :C<o> class type
o ::= γ | world | owner owners

e ::= null | γ | γ.f | γ.f = e | γ.m(e) expressions
| new o:C<o> | sheep(e) | v

v ::= null | ι values

γ ::= x | this | ι expression variables and addresses

Γ ::= γ:T , o:> variable environments

E ::= o�o owners environments

H ::= ι→ {N, f→v} heaps

map ::= {ι→ ι} map

x�o owners relation
x variables
ι object address
err errors
null null expression
f field names
m method names
C class names

Figure 8: Syntax.

In Fig. 8, we present the syntax for our formalism. The
syntax in grey is for our run-time model. Classes are pa-
rameterised with owner parameters. The formal owner pa-
rameters (x) in the class declaration are bounded by a lower
bound, ol, and an upper bound, ou. The valid owners of the
system are: world, owner, this, and variables (x). world

represents the top owner in the ownership hierarchy. Objects
with world as their owner can be referenced from anywhere
in the system. The world owner continues to exist at run-
time. The owner parameter owner represents the owner of
the current object, this. owner is only used statically, and
at run-time it is substituted by the actual object it repre-
sents. The owner this represents the current object, this.
At runtime, this is substituted by the instance of this. x

is a variable representing a formal owner parameter within
the class declaration.

Classes contain fields and methods. Fields are initialised to
null when an object is created. Sub-classing is orthogonal to
Sheep Cloning and is therefore omitted. Our method decla-
ration is equivalent to those in Java. Method bodies consist

Well-formed owner: E ; Γ ` o ok

Γ(γ) = >
E; Γ ` γ ok

(F-Var)
E; Γ ` world ok

(F-World)

E; Γ ` owner ok

(F-Owner)
E; Γ ` this ok

(F-This)

Well-formed types: E ; Γ ` N ok

class C<ol�x� ou>... E ; Γ ` o, o ok
E ; Γ `[o/x](ol�o) E ; Γ `[o/x](o�ou)

E ; Γ ` o:C<o> ok
(F-Class)

Well-formed heap: ` H ok

∀ι→ {N ; f→v} ∈ H : H ` N ok

fType(f, N) = N ′ H ` v : [ι/this]N ′
∀v ∈ v : v 6= null⇒ v ∈ dom(H)

` H ok
(F-Heap)

Figure 9: Well-formed judgements.

Γ = this : owner:C<x>, x:>
E = ol�x, x�ou, owner�world
E ; Γ ` owner � ol E ; Γ ` N,M ok

` class C<ol�x� ou> {N f; M} ok
(T-Class)

Γ′ = Γ, x:N ′ E ; Γ ` N,N ′ ok E ; Γ′ ` e : N

E ; Γ ` N m(N ′ x) {return e;} ok
(T-Method)

Figure 10: Classes and methods typing.

Static inside relation: E; Γ ` o � o

o � o′ ∈ E
E; Γ ` o � o′

(IC-Env)

Γ(this) = N

E; Γ ` this � owner

(IC-This)

E; Γ ` o ok

E; Γ ` o � o

(IC-Refl)

E; Γ ` o � o′′

E; Γ ` o′′ � o′

E; Γ ` o � o′

(IC-Trans)

E; Γ ` o ok

E; Γ ` o � world

(IC-World)

Figure 11: Inside relation.

of a return statement with an expression. Class types con-
tain the class name, a single owner parameter (o), denoting

ownH(o:C<o>) = o

H(ι) = {ι′ :C<o>, ...}
ownH(ι) = ι′

class C<ol�x� ou> {N f; M}

fields(C) = f

class C<ol�x� ou> {N f; M}

fType(fi, o:C<o>) = [o/owner, o/x]N i

class C<ol�x� ou> {N f; M}

N m(N ′ x′) {return e;} ∈M
mBody(m,o:C<o>) = (x′; [o/owner, o/x]e)

class C<ol�x� ou> {N f; M}

N m(N ′ x′) {return e;} ∈M
mType(m,o:C<o>) = [o/owner, o/x](N ′ → N)

Figure 12: Look up functions.

Expression typing: E; Γ ` e : N

E; Γ ` e : N

E; Γ ` sheep(e) : N

(T-Sheep)

E; Γ ` e : N ′

E; Γ ` N ′ <: N
E; Γ ` N ok

E; Γ ` e : N

(T-Subs)

E; Γ ` γ : Γ(γ)

(T-Var)

E; Γ ` γ : o:C<o>
fType(f, o:C<o>) = N ′

E; Γ ` e : N
E; Γ ` N <: [γ/this]N ′

E; Γ ` γ.f = e : N

(T-Assign)

E; Γ ` N ok

E; Γ ` null : N

(T-Null)

E; Γ ` γ : o:C<o>
E; Γ ` e : N ′′

mType(m, o:C<o>) = N ′ → N
E; Γ ` N ′′ <: [γ/this]N ′

E; Γ ` γ.m(e) : [γ/this]N

(T-Invk)

E; Γ ` γ : o:C<o>
fType(f, o:C<o>) = N

E; Γ ` γ.f : [γ/this]N

(T-Field)

E; Γ ` o:C<o> ok

E; Γ ` new o:C<o> : o:C<o>

(T-New)

Figure 13: Expression typing.

the owner of the type, and a set of owner parameters (o),
denoting the actual owner parameters for the class declara-
tion.

The owners-as-dominators policy is enforced by the bounds
on the formal owner parameters (x) in the class declaration,
and the premise in T-Class that states the lower bound (ol)
is always outside owner. This ensures the owner parameters
of a class must refer to classes that are outside the owner of
this class.

Our judgments are decided under two environments: Γ and
E . Γ maps variables to their type, and E stores the static
inside relations of the system. The variables in Γ are either
expression variables or owner parameters. Owner parame-
ters are distinguished by always having the top type (>).
At run-time, judgments are decided under the heap (H). H
is a set of mappings from address (ι) to object ({N ;f→v}).

We elide presenting our sub-typing rules as they are trivially
defined on reflexivity, transitivity, and top.

Well-formed owners, types, and heaps are defined in Fig. 9.
An owner parameter is well-formed if it is in Γ. The owners
world, owner, and this are variables and therefore are al-
ways well-formed. A class type is well-formed if a class decla-
ration for that class exists, if its owner and actual owner pa-
rameters are well-formed, and if the upper and lower bounds
are valid inside relations when the actual owners are sub-
stituted for the formal owner parameters. A heap is well-
formed if every non-null object in the heap is well-formed.

In Fig. 10, we define class well-formedness (T-Class) and
method well-formedness (T-Method). T-Class initialises
Γ and E , ensures the methods and types declared in the
class are well-formed, and preserves the owner-as-dominator
policy. T-Method ensures the method’s return type and
argument type are well-formed, and that the type of the
expression in the method and the method’s return type are
the same.

In Fig. 11, we define the static inside relation. The inside
relation defines the ordering of the owners, i.e., when a owner
(o) is inside another (o′). Most valid inside relations are
deduced from the relations in E , this is reflected in IC-Env,
where a relation is valid if it is in E . The owner this is only
valid if it exists in Γ and is inside owner, as stated in IC-
This. IC-Refl and IC-Trans respectively define reflexivity
and transitivity relations on owners. Finally, IC-World
denotes that all owners are inside world.

In Fig. 12, we present the look up functions in our formalism.
The function ownH can either take a type or an address. If
ownH is given a type, it returns the owner of that type.
Otherwise if ownH is given an address (ι), it returns the
owner of the object at ι in H. The function fields takes
a class name and returns the names of the fields in that
class. The function fType takes a field (fi) and a type
(o:C<o>) and returns the type of fi in the class C. The
function mBody takes a method (m) and a type (o:C<o>)
and returns the argument and expression of m in the class
C. Finally, the function mType takes the same arguments
as mBody but it returns the type of the method, which is
the argument type and return type of m.

Finally in Fig. 13, we define expression typing. T-Var en-
sures variables have the type as defined in Γ. T-Null allows
null to take any well-formed type. T-Field, T-Assign, T-
Invk, and T-New describe standard typing rules for field
look up, field assignment, method invocation, and object
creation. T-Subs is our subsumption rule. The expression
typing rule for Sheep Cloning (T-Sheep) gives the new clone
the same type as the expression being cloned.

4.2 Dynamic System
Our small step operational semantics for expressions are de-
fined in Fig. 14. They are mostly standard: R-Field re-
duces a field look up expression to the value in that field.
R-Assign reduces a field assignment expression to the as-
signing value and updates the heap. R-New reduces an ob-
ject creation expression to the address of the newly created
object in the heap. R-Invk reduces a method invocation
expression to the expression returned in the body of the
method. Finally, R-Sheep performs Sheep Cloning, which
we describe in detail in the next section. We elide the con-
gruence and error reduction rules.

Expression reduction:

H(ι) = {N ; f→v}
ι.fi;H; vi;H

(R-Field)

H(ι) = {N ; f→v}
H′ = H[ι 7→ {N ; f→v[fi 7→ v]}]

ι.fi = v;H; v;H′

(R-Assign)

H(ι) undefined fields(C) = f

H′ = H, ι→ {o:C<o>; f→null}
new o:C<o>;H; ι;H′

(R-New)

H(ι) = {o:C<o>; ...}
mBody(m, o:C<o>) = (x; e)

ι.m(v);H; [v/x,ι/this,o/owner]e;H
(R-Invk)

SheepAux(v, v, H, ∅) = v′; H′; {ι→ ι′}
sheep(v); H; v′; H′

(R-Sheep)

Figure 14: Expression reduction rules.

4.3 Sheep Cloning Semantics
The reduction for Sheep Cloning, R-Sheep, reduces an ex-
pression passed to a Sheep clone by using the SheepAux func-
tion, given in Fig. 17. SheepAux Sheep clones a value by
performing a graph traversal on the heap. The SheepAux

function takes two values (v, v′), the heap (H), and a map

function. v is the object being cloned, and remains the same
throughout the traversal. v′ is the current object SheepAux

has reached. The map is a mapping from objects to their
clone, (ι → ι′), and is used to ensure objects are copied at
most once. The SheepAux function returns the Sheep clone
of v′ (v′′), a heap (H′), and a map function.

In Fig. 15, we present the dynamic variant of the inside
relation. Both variants are reflexive, transitive, and contain
a world case. The dynamic relation, however, uses the heap
to derive the relation between an object and its owner (I-
Rec), while the static relation (IC-Env) is deduced from
the bounds in the class declaration and E .

In Fig. 16, we present our well-formed map judgment and
define map. map is a function that maps the object address (ι)

Dynamic inside relation:

H ` ι � ι
(I-Ref)

H ` ι � World

(I-World)

H ` ι � ι′′
H ` ι′′ � ι′

H ` ι � ι′

(I-Trans)

H(ι) = {ι′ :C<o>, ...}
H ` ι � ι′

(I-Rec)

Figure 15: Dynamic inside relation.

Well-formed map and use of map:

H ` ∅ ok

(F-EmptyMap)

∀ ι : ι ∈ range(map) ⇒
ι ∈ dom(H)

H ` map ok

(F-Map)

Mapping of type:

map = {ι 7→ ι′}
map(N) = [ι′/ι]N

(M-Type)

Figure 16: Map and mapping.

Auxiliary Sheep Clone Functions:

H(ι′) = {N; f→v}
H ` ι′ � ι

map(ι′) undefined

map1 = map, ι′ 7→ ι′′

H(ι′′) undefined

H1 = H, ι′′ 7→ {map(N); f→null}
n = |{f→v}|

∀j : 1≤j≤n :{SheepAux(ι, vj, Hj, mapj) = v′j; Hj+1; mapj+1}
H′ = Hn+1[ι

′′ 7→ {map(N); f→v′}]
SheepAux(ι, ι′, H, map) = ι′′; H′; mapn+1

(R-SheepInside)

H 0 ι′ � ι
map(ι′) undefined

map′ = map, ι′ 7→ ι′

SheepAux(ι, ι′, H, map) = ι′; H; map′

(R-SheepOutside)

map(ι′) = ι′′

SheepAux(ι, ι′, H, map) = ι′′; H; map

(R-SheepRef)

SheepAux(v, null, H, map) = null; H; map

(R-SheepNull)

Figure 17: Auxiliary sheep functions.

of an original object to the address of its clone (ι′). A map

is well-formed when it is either empty (F-EmptyMap) or
when every clone in the map is in the heap it is judged under
(F-Map). The mapping over types is crucial in defining the
type of the Sheep clones. A mapping over a type (N) is when
the owner parameters of N are applied with the mappings in
map (M-Type). Applying an empty map over N will simply
return N .

Next we discuss the cases of the SheepAux function in Fig. 17.

The inductive case, R-SheepInside, constructs the Sheep
clone (ι′′) of the object in ι′, if ι′ exists in the heap (H) and
if ι′ is inside ι, as defined by the dynamic inside relation. The
clone is created with a fresh address ι′′, where all its fields are
initially set to null. A recursive call is made to SheepAux

for each field in ι′. The returned values are assigned into
the fields of ι′′ once all the recursive calls have finished. A
new heap (H′) is constructed from the old heap (H) with
the addition of ι′′ and any changes to the heap from the
recursive calls on SheepAux. Similarly, the map is updated
with the mapping from ι′ to ι′′ and any changes to the map

from the recursive calls on SheepAux.

The case R-SheepOutside occurs when ι′ is outside ι. In
this case, SheepAux returns ι′ as it would be aliased. The
map is updated with a mapping from ι′ to ι′, this shows that
ι′ is its own Sheep Clone. Owners-as-dominators ensures
that ι′ will not be encountered later in the context of an
object that needs to be copied.

The case R-SheepRef occurs when ι′ already exists in the
map. This indicates that ι′ has already been cloned. Sheep-

Aux returns the Sheep clone (ι′′) in the map, with no changes
to the heap or the map.

Finally, the case R-SheepNull occurs when SheepAux has
to Sheep clone null. In this case SheepAux returns null,
with no changes to the heap or the map.

4.4 Subject Reduction
In this subsection, we present subject reduction along with
proofs for other properties of our formalism.

Theorem 1: Subject Reduction.

For all H, H′, e, v, and N , if H ` e : N and
e;H ; v;H′ and ` H ok then H′ ` v : N and
` H′ ok.

Subject reduction requires the system to show preservation
of expression typing, heap well-formedness, and owners-as-
dominators, for every expression reduction. We decided
to state owners-as-dominators as a separate theorem away
from subject reduction. The proof of subject reduction is
by structural induction over the derivation of the expres-
sion reduction in Fig. 14. We have a large number of as-
sociated lemmas, mostly the standard weakening, inversion,
well-formedness, and substitution lemmas. We state and
prove some of the more interesting lemmas below.

The most interesting case of subject reduction is R-Sheep,
where e = Sheep(v′), for some v′. Intuitively, the proof for
this case is to show that the Sheep clone has the same type
as the cloned object. We use ‘cloned object’ to mean the
object being Sheep cloned and ‘clone’ to refer to the newly
created object which is a copy of the cloned object, that is
ι and ι′ respectively in the reduction sheep(ι); H; ι′; H′.
We use the terms ‘inside’ and ‘outside’ to refer to our inside
relation, which, defines the relation between two objects in
the ownership hierarchy.

Subject reduction case: R-Sheep.

For all H, H′, v, v′, and N , if H ` sheep(v) :
N and ` H ok and sheep(v);H ; v′;H′ then
H′ ` v′ : N and ` H′ ok.

Proof outline: The reduction of sheep(v) invokes the
function SheepAux(v, v, H, ∅) by the premise of R-She-
ep. We then apply Lemma 1 on this function, which re-
turns ` H′ ok andH′(v′)↓1 = map(H (v)↓1). We can deduce
that H′(v′)↓1 = map(H(v) ↓1) as map is initially empty and
that v = v′. Then by T-Var, we get H′ ` v′ : N .

The key to subject reduction is Lemma 1.

Lemma 1: Sheep Cloning preserves heap and
map well-formedness, and type of the cloned ob-
ject.

For all H, H′, v, v′, v′′, map, and map′, if `
H ok and H ` map ok and SheepAux(v, v′,H,
map) = v′′;H′; map′ then ` H′ ok and H′ `
map′ ok and H′(v′′) ↓1 = map(H(v′) ↓1).

Proof outline: There are four cases to consider in the
proof of Lemma 1, they are: R-SheepInside; R-SheepOu-
tside; R-SheepRef; R-SheepNull. The proof for R-Shee-
pNull is trivial as the heap and the map are unchanged, and
by T-Null the null expression can take any well-formed
type.

For the case R-SheepOutside, we have H = H′ and v′ =
v′′ = ι′, while map′ contains an identity mapping of ι in
addition to the mappings in map. To show H′ ` map′ ok, we
start by stating that ι′ ∈ H, therefore ι′ ∈ H′ as H = H′.
Now with ι′ ∈ H′, ` H′ ok, the definition of map, and F-
Map we can state that H′ ` map′ ok. To show H′(ι′) ↓1
= map(H(ι′) ↓1) we must show that the mappings in map does
not apply through the type in H(ι′) ↓1. If we let H(ι′) ↓1=
N ′, for some N ′, then for all ι′′ ∈ dom(map) either H 0 ι′ �
ι′′ or ι′′ 7→ ι′′. As either ι′ is outside of ι′′, which means
that ι′′ is an object that has already been cloned, or that ι′′

is an object that is also outside of ι. By Theorem 2, we
can guarantee that N ′ does not have any owner parameters
inside ι′′ because the inside relation is transitive. This means
that even if N ′ has owner parameters where ι′′ is outside of
ι, we still can ensure that N ′ remains unchanged as ι′′ maps
to itself in map. Therefore map(H(ι′) ↓1) = N ′, and H′(ι′) ↓1
= map(H(ι′) ↓1).

In the case R-SheepRef, H = H′ and map = map′, which
trivially proves ` H′ ok and H′ ` map′ ok respectively. To
show H(ι′′) ↓1 = map (H(ι′) ↓1) we must consider how ι′

was stored in map. If it is by R-SheepOutside then we
can use the same reasoning as the case above, where ι′ =
ι′′ and H(ι′) ↓1 = map(H(ι′) ↓1). This is because either the
mappings in map apply the owner parameters of H(v′) ↓1
with an identity mapping or none at all. If ι′ was added into
map by R-SheepInside then by definition ι′′ is a Sheep clone.
Therefore for some H1 and H2, and some map′′, we have
H2(ι′′) ↓1 = map′′(H1(ι′) ↓1). Then by the recursive nature
of R-SheepInside we know that H1 ⊆ H and H2 ⊆ H.
Therefore H(ι′′) ↓1 = map′′(H(ι′) ↓1), so now we must show
map′′(H(ι′) ↓1) = map (H(ι′) ↓1). Again by the recursive
nature of R-SheepInside we know that map′′⊆ map, hence
map = map′′, map∗, for some map∗. By Theorem 2, we can
deduce that H(ι′) ↓1 has no formal owner parameters in
dom(map∗) because the formal owner parameters of ι′ have

to be outside of ι′’s owner. Therefore map′′(H(ι′) ↓1) =
map(H(ι′) ↓1), and finally, H(ι′′) ↓1 = map(H(ι′) ↓1).

The proof for the case R-SheepInside is far more compli-
cated than the previous three cases. We will only outline the
proof here. Please contact the authors for the full proof. The
first step is to show ` H1 ok, H1 ` map1 ok and H1(ι′′) ↓1
= map(H(ι′) ↓1). This can achieved by the premises of R-
SheepInside, along with Lemma 2 and Lemma 3. Then
we introduce a sublemma to show the recursive calls of
SheepAux give ` Hj ok, Hj ` mapj ok and Hj(v

′
j) ↓1

= mapj−1(H(vj−1) ↓1). This sublemma is proved by nu-
merical induction over j, where the base case is when j = 1.
To prove the inductive case we invoke the induction hypoth-
esis of the main lemma. Next we need to show ` H′ ok
when H′ = Hn+1[ι′′ 7→ {map(N); f→v′}]. For all the v′

produced by the sublemma to be assigned into Hn+1, we
must first show that each v′ has the same type as the null

when the clone (ι′′) was created. This is achieved by the
correctness property that SheepAux does not change objects
in H, Theorem 2, and substitution principles. Then with
the Lemma: heap preserves expression typing on field as-
signment, we show that the v′s have the correct types under
H′. This gives ` H′ ok. Next is to show H′ ` mapn+1 ok.
From the sublemma we have Hn+1 ` mapn+1 ok and be-
cause nulls are not in dom(mapn+1) or range(mapn+1), by
the definition of map, and F-Map, and the definition of H′,
we can deduce that ∀ ι : ι ∈ range(mapn+1)⇒ ι ∈ dom(H′).
Therefore H′ ` mapn+1 ok. Since we have already shown
that H′(ι′′) ↓1 = map(H(ι′) ↓1), we are done.

Lemma 2: Mapped types preserves well-form-
edness.

For all H, map, and N , if ` H ok, H ` map ok,
and H ` N ok then H ` map(N) ok.

Proof outline: This lemma is proved by natural deduc-

tion on H ` N ok. Let map = {ι 7→ ι′}, then by def-

inition map(N) = [ι′/ι]N . H ` [ι′/ι]N ok is proved by
structural induction on the derivation of H ` N ok when
N= o:C<o>. By the premises of F-Class H ` o, o ok,
H ` [o/x](ol�o) ok, H ` [o/x](o�ou) ok, and there ex-
ists a class class C<ol�x� ou>.... Then we invoke the
Lemma: owner variable substitution preserves owner well-
formedness on H ` o, o ok with H ` map ok and ` H ok to

get H ` [ι′/ι]o, [ι′/ι]o ok. Similarly, we invoke the Lemma:
owner variable substitution preserves inside relation on
H ` [o/x](ol�o) ok and H ` [o/x](o�ou) ok with H `
map ok, and ` H ok. This gives H ` [ι′/ι]([o/x](ol�o)) ok

and H ` [ι′/ι]([o/x](o�ou)) ok. Finally we apply F-Class

on H ` [ι′/ι]o, [ι′/ι]o ok, H ` [ι′/ι]([o/x](ol�o)) ok, and

H ` [ι′/ι]([o/x](o�ou)) ok to get H ` [ι′/ι]N ok.

Lemma 3: Map preserves field type.

For all H, map, fi, and N , if ` H ok, H `
map ok, H ` map(N) ok, and fType(fi, N) =
N ′ then fType(fi, map(N)) = map(N ′).

Proof outline: This lemma is proved by natural deduction

on fType(fi, N) = N ′. Let map={ι 7→ ι′}, then map(N)

= [ι′/ι]N , map(N ′) = [ι′/ι]N ′, and fType(fi, [ι′/ι]N) =

[ι′/ι]N ′. Let N= o:C<o>, then with H ` [ι′/ι](o:C<o>) ok

and Lemma 2, we can state that H ` [ι′/ι]o, [ι′/ι]o ok,

therefore H ` ([ι′/ι]o):C<[ι′/ι]o> ok. Next, by applying

the definition of fType on fType(fi, ([ι′/ι]o):C<[ι′/ι]o>)
and fType(fi, N) = N ′, along with substitution principles,

we get fType(fi, ([ι′/ι]o):C<[ι′/ι]o>) = [ι′/ι]N ′. This proof
follows from the proof for the Lemma: owner variable sub-
stitution preserves type well-formedness.

Below we present the owners-as-dominators theorem. We
are required to prove this theorem as part of subject reduc-
tion. This theorem states that for all well-formed heaps,
all references to an object come from inside the owner (as
defined by ownH) of that object [4]. Intuitively this means
all references to an object can only come from the object’s
owner, siblings of the object, or from inside the object’s con-
text.

Theorem 2: Owners-as-dominators.

For any H, if ` H ok then ∀ι 7→ {N ; {f7→ v}} ∈
H where ∀ι′ ∈ v : H ` ι � ownH(ι′).

This theorem is proved by showing every expression reduc-
tion preserves this property on the heap it produces. For the
reduction R-Sheep, the only interesting case is R-SheepIns-
ide. The proof for owners-as-dominators on the heap (H′)
produced by R-SheepInside is achieved in two parts. The
first part shows the heap with the newly created clone (ι′)
preserves owners-as-dominators. This holds by the fact that
the owner of the clone is inside the owner of the original
cloned object, i.e., the owner of the object that initiated the
Sheep Clone. The second part is to show all the values of ι′

satisfy the owners-as-dominators property. This is achieved
by the transitivity of two inside relations. The first inside
relation is that the owner of the values is outside the owner
of the fields they are assigned to. The second relation is that
the owner of the field is outside ι′, the object which the fields
belong to. The transitivity of these two inside relations gives
owners-as-dominators for H′.

Finally, we present our progress theorem. The proof for our
progress theorem is standard and has been omitted.

Theorem 3: Progress.

For all H, H′, e, e′, and N , if H ` e : N and
` H ok then e;H; e′;H′ or ∃v : e = v.

Progress is proved by structural induction on the deriva-
tion of expression typing. A case analysis is required for
T-Assign, T-Invk, and T-Sheep, as the reduction for these
expressions does not always reduce down to a value in a
single step.

4.5 Correctness of Sheep Cloning
Below, we present seven correctness properties and their
proofs to show correctness for Sheep Cloning.

The first property states that a new object must be created
when Sheep Cloning an object and the newly created object
must not be the same as the cloned object:

Correctness property 1: Sheep Cloning cre-
ates a new object.

For all H, H′, ι, and ι′, if ` H ok and sheep(ι);
H; ι′; H′ then ι′ /∈ dom(H) and ι 6= ι′.

Proof outline: This property is proved by case analysis
on the premise of sheep(ι), which is the function Sheep-

Aux(ι, ι,H, ∅). The cases R-SheepNull, R-SheepRef, and
R-SheepOutside are all not applicable for this particu-
lar SheepAux function. For the case R-SheepInside, the
premise states that H(ι′) undefined, hence ι′ /∈ dom(H).
We can then deduce ι 6= ι′ by ι′ /∈ dom(H) and the seman-
tics of SheepAux, where it states that ι ∈ dom(H).

The second property states the clones must preserve owners-
as-dominators, as stated in Theorem 2:

Correctness property 2: Sheep Cloning pre-
serves owners-as-dominators.

For all H, H′, ι, and ι′, if ` H ok and sheep(ι);
H; ι′; H′ and H preserves owners-as-dominators
then H′ preserves owners-as-dominators.

Proof outline: This property is proved by the proof
of Theorem 2: expression reduction preserves owners-as-
dominators on heap. The outline of the proof for Theo-
rem 2 is to show the heap preserves owners-as-dominators
in each cases of the SheepAux function. This is trivial for
R-SheepNull, R-SheepRef, and R-SheepOutside. For
R-SheepInside, we have already discussed its proof outline.

The third property states that Sheep Cloning creates a sub-
heap that contains the new object:

Correctness property 3: Sheep Cloning cre-
ates a sub-heap that contains the new object.

For all H, H′, H′′, ι, and ι′, if ` H ok and
sheep(ι); H; ι′; H′ and ι′ 6= ι then ∃ H′′ where
H′ = H, H′′ and ι′ ∈ dom(H′′) and ι ∈ dom(H).

Proof outline: This property is proved by the same rea-
soning as the proof for Lemma 1. Once again R-SheepNu-
ll, R-SheepRef, and R-SheepOutside are not applica-
ble. Making the only interesting case R-SheepInside, by
the premise of the case and Lemma 1, we know that if
SheepAux(ι, ι′,H, map) = ι′′,H′, map′ then H ⊆ H′. This
give H1 = H, ι′ 7→ {...}, which implies H ⊆ H1 and ι′ ∈
dom(H1 \ H). Again by the premise of this case, we get
H1 ⊆ H′ and H1 \H ⊆ H′′. Which let us conclude that ι′ ∈
dom(H′′).

The fourth property states that if a reference in a clone is
pointing to an object (ι) in the original heap (H), that does
not contain the clone, then ι must be outside that clone.

Correctness property 4: Sheep Cloning does
not introduce references to the cloned object’s
representation.

For all H, H′, ι, and ι′, if ` H ok and sheep(ι);
H; ι′; H′ where H′ = H, H′′ and ι′ 6= ι and ∀ f
7→ ι′′ ∈ range↓2 (H′′) where ι′′ ∈ dom(H) then
H′ ` ι � ι′′.

Proof outline: This property is proved by natural deduc-
tion on ways that ι′′ can be added into the range of H′. This
is achieved by case analysis on the construction of the Sheep
clone by the SheepAux function. The cases R-SheepNull
and R-SheepInside are not applicable, as null /∈ dom(H)
and ι′′ ∈ dom(H) respectively. The case R-SheepRef does
not offer any insight into the relation between ι′′ and ι. We
must determine how ι′′ was added into the map. For the
case R-SheepOutside we have ι′′ ∈ dom(H) if f 7→ ι′′ ∈
range↓2 (H′′) by the definition of R-SheepOutside. Then
by the premise of R-SheepOutside, H ` ι � ι′′, which then
gives H′ ` ι � ι′′, since H ⊆ H′.

The fifth property states that a reference can point to objects
in the cloned heap (H′′), if and only if those objects are
inside the representation of a clone.

Correctness property 5: All new objects are
in the representation of the clone, and all objects
in that representation are new.

For all H, H′, ι, and ι′, if ` H ok and sheep(ι);
H; ι′; H′ where H′ = H, H′′ and ι′ 6= ι then
ι′′ ∈ dom(H′′) if and only if H′ ` ι′′ � ι′.

Proof outline: This property is proved in two parts
by case analysis on the SheepAux function. The first part
is to show H′ ` ι′′ � ι′ when ι′′ ∈ dom(H′′). This is
only possible by R-SheepInside. By the premises of R-
SheepInside, H ` ι∗ � ι, where map(ι∗)= ι′′. By lemma:
address mapping preserves inside relation, we have H `
map(ι∗) � map(ι), which gives H ` ι′′ � ι′, and finally gives
H′ ` ι′′ � ι′, as H ⊆ H′. The second part is to show ι′′ ∈
dom(H′′) when H′ ` ι′′ � ι′. This part is also only possi-
ble in R-SheepInside. By the same argument as the proof
outlined for the fourth correctness property, we have H =
H, ι′ 7→ {N, f7→ v} and H1 ⊆ H′. Hence ι′ 7→ {N, f7→ v} ∈
dom(H′ \ H), which means ι′ 7→ {N, f7→ v} ∈ dom(H′′).

The sixth property states that all objects outside the cloned
object are also outside the clone.

Correctness property 6: All objects outside
the cloned object are outside the clone.

For all H, H′, ι, and ι′, if ` H ok and sheep(ι);
H; ι′; H′ where ι′ 6= ι and ∀ι′′ ∈ dom(H) and
H′ ` ι � ι′′ then H′ ` ι′ � ι′′.

Proof outline: This property is proved by contradiction
on the construction of the Sheep clone. Lets assume for
some ι∗, where ι∗ ∈ dom(H), ι∗ 6= ι, and H′ ` ι � ι∗,
that H′ 0 ι′ � ι∗. If ι∗ = ι, then this property trivially
holds. H′ 0 ι′ � ι∗ could either mean H′ ` ι∗ � ι′ or there
are no ownership relation between ι′ and ι∗. The latter is
not possible, because there must be an ownership relation
between ι′ and ι∗, as ι′ and ι have the same owner and we
know that ι is inside ι∗. By the definition of SheepAux, ι∗

would have been applied by R-SheepInside as H′ ` ι∗ � ι′.
By the premise of R-SheepInside we know thatH′ ` ι∗ � ι,
which contradicts H′ ` ι � ι∗. Therefore H′ 0 ι′ � ι∗ is not
possible for some ι∗, where ι∗ ∈ dom(H) and H′ ` ι � ι∗.

The seventh property states that for each reference inside a
clone pointing to objects that are outside the cloned object,
there exists a corresponding reference from the cloned object
pointing to those objects.

Correctness property 7: For all references
from an object inside the clone to an object out-
side the clone, there is a reference to the same
object from inside the cloned object.

For all H, H′, ι, and ι′, if ` H ok and sheep(ι);
H; ι′; H′ where H′ = H, H′′ and ι′ 6= ι and ∀
f 7→ ι′′ ∈ range↓2 (H′′) and H′ ` ι′ � ι′′ then ∃
f′ 7→ ι′′ ∈ range↓2 (H).

Proof outline: This property is proved by natural deduc-
tion on the construction of Sheep clones by the SheepAux

function. By H′ ` ι′ � ι′′ we can deduce that ι′′ 7→ ι′′ ∈
map and H′ ` map(ι) � map(ι′′), as map(ι′) = ι. Hence by
lemma: address mapping preserves inside relation, we have
H′ ` ι � ι′′. Now we must consider how the field (f) was
constructed. The only possible way is when R-SheepInside
recursively traverse through the values of the object it is
cloning. Hence, ι′′ must be a value of a field of an object in
the original heap.

5. FUTURE WORK
In this section, we explore some of our ideas for future work
regarding Sheep Cloning.

5.1 Ownership Transfer with Sheep Cloning
Ownership transfer was first presented by Clarke and Wrig-
stad [8] using external uniqueness. External uniqueness en-
sures objects are only accessible via a single externally uniq-
ue reference from outside the object’s representation. No
restrictions are placed on internal referencing from inside
the object’s representation. Ownership transfer is achieved
by transferring the externally unique reference. Clarke and
Wrigstad use movement bounds to designate the scope that
each externally unique reference can be moved. A unique
reference cannot be moved outside its movement bounds.

Müller et al. describe another implementation of ownership
transfer with Universe Types [19]. Universe Types [18] en-
force the owners-as-modifiers policy, where objects are freely
aliased but only their owner is allowed to modify them.
Ownership transfer in Universe Types is achieved by cre-
ating clusters of objects and moving a (externally) unique
pointer between clusters. The external uniqueness property
is achieved by allowing only one unique reference into each
cluster, and similarly, internal referencing within a cluster is
unrestricted.

Ownership transfer, with external uniqueness and Univer-
se Types, illustrated the need for the owner of the object
that would be transferred to enforce the external uniqueness
property. By the semantics of Sheep Cloning in R-Sheep
and Fig. 17, we can deduce that all Sheep Clones inherit
the external uniqueness property. This is because Sheep
Cloning guarantees that the only reference into a newly cre-
ated Sheep clone is from the owner of the Sheep clone. This
means the Sheep clones possess the externally uniqueness
property as the reference from its owner behaves as an ex-
ternal unique reference. By transferring this reference to

another owner, we can simulate the first part of ownership
transfer. The second part is to disown and dereference the
original object that has been cloned. Combining these two
parts, we can simulate the behaviour of ownership transfer
as shown in external uniqueness.

We believe there are advantages in supporting ownership
transfer via Sheep Cloning. Any constraints that were on the
object to allow its ownership to be transfer, would now be on
its Sheep clone instead. For example, the movement bounds
described by Clarke and Wrigstad [8] demand a trade-off be-
tween what an object can access and where it can be moved.
An object with tight movement bounds has more restrictions
on its movement but fewer restrictions on what it can access;
whereas an object with loose movement bounds has fewer
restrictions its movement but what it can access is severely
limited. In a Sheep Cloning based ownership transfer sys-
tem the movement bounds would only constrain the Sheep
clones, and not the original object. The trade-off for move-
ment bounds still exists, however, they would be generated
when constructing the Sheep clones. We aim to formalise
this style of ownership transfer in a formalism similar to the
one presented in this paper.

5.2 Sheep Cloning without Owners as Domi-
nators

Cheng and Drossopoulou present ideas to perform object
cloning in an ownership system without owners-as-dominat-
ors [5]. Their system is build on top of the system developed
by Drossopoulou and Noble [12]. Cheng and Drossopoulou
identify a set of problematic cases. For example, when
a reference path re-enters the representation of an object
from outside the object’s representation. It is also possi-
ble that this reference path is the only way to reach that
particular part of the object’s representation. Cheng and
Drossopoulou offer two alternative solutions, either enforce
owners-as-dominators and all possible problematic cases wo-
uld cease to exist, or statically prevent cloning on these prob-
lematic cases.

It is possible for their system to determine these proper-
ties statically, however, Sheep Cloning operates at runtime.
For a system without owners-as-dominators, Sheep Cloning
must traverse the entire heap to determine which objects are
in an object’s representation. A simple solution is for Sheep
Cloning to ignore all objects in the cloned object’s represen-
tation that are not reachable from its owner without going
out of its representation. However, this would mean Sheep
Cloning would no longer clone every object in an object’s
representation.

Another issue is when a two-way reference exists between
an object (A) inside a context and an object (B) outside that
context, as shown in Fig. 18. Sheep Cloning the object (A)
inside the context would create an object (A′) that also has
a reference to B, however, B would not know the existence of
A′. Consider if the system has an invariant property where
the purpose of A is to pass messages to B, and that B has to
reply to any message passed by A. Then a clone of A would
expect this bidirectional relationship with B. However, if A′

passes a message to B, B would respond to A instead of A′, as
B does not know the existence of A′, breaking the invariant
of the system.

Figure 18: Sheep cloning with descriptive ownership
types.

One of the benefits of Sheep Cloning is how it utilities owner-
ship types and the structures provided by owners-as-domina-
tors. Which means we may need to consider a different set
of semantics for Sheep Cloning in systems without owners-
as-dominators.

6. RELATED WORK
Drossopoulou and Noble [12] propose a static object cloning
implementation, inspired by ownership types. Every object
has a cloning domain and objects are cloned by cloning their
domain. Just as ownership types enforce a topological struc-
ture upon the heap, the cloning domain provides a hierarchi-
cal structure for the objects in the program. This is achieved
by placing cloning annotations on every field of every class.
Using these annotations the cloning paths for each field of a
class are created. Objects can have paths to other objects
that are not in their cloning domain. The decision to clone
an object is determined by the cloning domain of the initial
cloning object or the originator. Each clone() method ex-
plicitly states, through Boolean parameters which fields are
in its cloning domain. The clone() method then recursively
calls the clone() method of each field, passing in Boolean

arguments set by the originator.

In Drossopoulou and Noble’s system, a parametric clone
method is of the form clone(Boolean s1, ..., Boolean

sn, Map m). The variables s1, ..., sn in the arguments of
a class’s clone() method are associated with the fields of
that class. An object is cloned when that object’s clone()

method is called, and fields are cloned only if true is passed
into the cloning parameter (si). In contrast, the expression
for Sheep Cloning is sheep(ι), where ι is the object to be
cloned.

Sheep Cloning is context free, which means the semantics
of Sheep Cloning remain the same regardless of the class
using it or the object (ι) passed in. Sheep Cloning uses a
mapping between the original object and its clone, as does
Drossopoulou and Nobles’ map in their clone() method.
The mapping in Sheep Cloning, however, operates on the
heap at run-time, hiding the implementation of Sheep Cloni-
ng from its users.

There are also several papers that discuss the need for owner-
ship-based cloning. In “Exceptions in ownership types sys-
tems”[11], Dietl and Müller outline several possible solutions
to exception handling for Universe Types. One solution is to

clone the exception object when it appears, then propagate
the clone through the stack to the exception handler. They
then explain that supporting exceptions by cloning requires
no changes to their ownership system. In the end, they did
not choose to handle exceptions with cloning. The reasons
they cited were the need for every object in the system to
be cloneable and the overhead cost of object cloning, espe-
cially if an exception is propagated multiple times before it
is caught.

In “Minimal Ownership for Active Objects” [6], Clarke et al.
develop active ownership, an ownership-based active object
model for concurrency. An active object is an object that
interacts with asynchronous methods while being controlled
by a single thread. To guarantee safety and provide freedom
from data races for the interaction between active objects,
Clarke propose using unique references and immutable ob-
jects, and cloning the active object only when necessary.
They then discuss three cases where they must clone the ac-
tive objects, by using a“minimal clone operation”. The min-
imal clone operation determines whether an object’s fields
are cloned or aliased based on their ownership annotation.
This makes their operation very similar to Sheep Cloning,
so much so that Clarke et al. mention how Sheep Cloning
can be used in its place.

Aside from the work of Drossopoulou and Noble, we are
aware of one other cloning implementation that is similar to
Sheep Cloning. In Nienaltowski’s PhD. thesis [20], he reiter-
ates the excessiveness of copying an object’s whole structure
using deep import (deep cloning) and the potential dan-
gers introduced by shallow cloning. This inspired him to
introduce a lightweight operation, object import, for Eif-
fel’s SCOOP (Simple Concurrent Object-Oriented Program-
ming). Object import copies the objects of non-separate ref-
erences while the objects from a separate reference are left
alone. When cloning objects in SCOOP all non-separate ref-
erences must be followed and the objects reached, are copied,
whereas the objects of separate references are considered
harmless. The policy of copying objects by distinguishing
between separate references and non-separate references is
similar to the policy of cloning objects by distinguishing be-
tween objects inside the representation and objects outside
the representation. Sheep Cloning and object import, how-
ever, still have their differences. Sheep Cloning uses owner-
ship types, a method to control the topology of objects on
the heap, while object import uses separate types, a method
to identify objects for the SCOOP processor.

Jensen et al [16] propose placing static cloning annotations
on classes and methods to aid users in constructing their
cloning methods. The annotations define the copy policy
for each class, where the policies ensure the maximum shar-
ing possible between the original object and its clones. All
cloning applications of a class must adhere to their copy
policy. The copy policy is checked statically by a type and
effect system. The copy policy does not perform cloning
functions or generate the cloning method, it is just a set of
specifications for clones produced. This differs from Sheep
Cloning as our formalism includes an actual algorithm for
object cloning, and our proofs guarantee the clones produced
are structurally equivalent (as defined in Sect. 4.5) to the
original object.

One of the first papers to identify the confusion between
the semantics and the implementation of the copy function
was Grogono and Chalin [13]. They discuss how it is more
important if the objects being cloned are immutable or mu-
table than if the object is a value or a reference. They also
touched on the idea of object representation, and the need
to distinguish semantics from efficiency when copying ob-
jects. They concluded that effect-like systems need to play
a greater role in object copying.

Grogono and Sakkinen [14] present a technique to generate a
cloning function. They discuss the issues surrounding copy-
ing objects and the difficulty in comparing objects. Grogono
and Sakkinen also present a set of detailed examples of var-
ious cloning operations and type equality. They explore the
copying and comparing features in several programming lan-
guages.

7. CONCLUSION
In this paper we have presented a formalism of Sheep Cloni-
ng, and its soundness proof. We motivated the need for
Sheep Cloning by comparing Sheep Cloning against existing
form of object cloning and showing that Sheep Cloning is
preferable.

8. REFERENCES
[1] Mart́ın Abadi and Luca Cardelli. An imperative

object calculus. In Theory and Practice of Software
Development (TAPSOFT). 1995.

[2] Mart́ın Abadi, Luca Cardelli, and Ramesh
Viswanathan. An Interpretation of Objects and
Object Types. In Principles of Programming
Languages (POPL), 1996.

[3] Jonathan Aldrich and Craig Chambers. Ownership
Domains: Separating Aliasing Policy from Mechanism.
In European Conference on Object Oriented
Programming (ECOOP), 2004.

[4] Nicholas Cameron. Existential Types for Variance -
Java Wildcards and Ownership Types. PhD thesis,
Department of Computing, Imperial College London,
2008.

[5] Ka Wai Cheng and Sophia Drossopoulou. Types for
deep/shallow cloning. Technical report, Imperial
College London, 2012.

[6] Dave Clarke, Tobias Wrigstad, Johan Östlund, and
Einar Johnsen. Minimal ownership for active objects.
In Programming Languages and Systems. 2008.

[7] David Clarke. Object Ownership and Containment.
PhD thesis, School of Computer Science and
Engineering, The University of New South Wales,
Sydney, Australia, 2001.

[8] David Clarke and Tobias Wrigstad. External
Uniqueness is Unique Enough. In European Conference
on Object Oriented Programming (ECOOP), 2003.

[9] David G. Clarke and Sophia Drossopoulou.
Ownership, Encapsulation and the Disjointness of
Type and Effect. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
2002.

[10] David G. Clarke, John M. Potter, and James Noble.
Ownership Types for Flexible Alias Protection. In
Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA), 1998.

[11] Werner Dietl and Peter Müller. Exceptions in
Ownership Type Systems. In Formal Techniques for
Java-like Programs (FTfJP), 2004.

[12] Sophia Drossopoulou and James Noble. Trust the
clones . In Formal Verification of Object-Oriented
Software (FoVEOOS), 2011.

[13] Peter Grogono and Patrice Chalin. Copying, sharing,
and aliasing. In In Proceedings of the Colloquium on
Object Orientation in Databases and Software
Engineering (COODBSE’94), 1994.

[14] Peter Grogono and Markku Sakkinen. Copying and
comparing: Problems and solutions. In European
Conference on Object Oriented Programming
(ECOOP). 2000.

[15] Atsushi Igarashi, Benjamin C. Pierce, and Philip
Wadler. Featherweight Java: a Minimal Core Calculus
For Java and GJ. ACM Trans. Program. Lang. Syst.,
2001.

[16] Thomas Jensen, Florent Kirchner, and David
Pichardie. Secure the clones: Static enforcement of
policies for secure object copying. In European
Symposium on Programming (ESOP), 2011.

[17] Peter Müller and Arnd Poetzsch-Heffter. Universes: A
Type System for Controlling Representation
Exposure. In Programming Languages and
Fundamentals of Programming, 1999.

[18] Peter Müller and Arnd Poetzsch-Heffter. Universes: A
Type System for Alias and Dependency Control.
Technical Report 279, Fernuniversität Hagen, 2001.

[19] Peter Müller and Arsenii Rudich. Ownership transfer
in universe types. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
2007.

[20] Piotr Nienaltowski. Practical framework for
contract-based concurrent object-oriented
programming. PhD thesis, Department of Computer
Science, ETH Zurich, 2007.

[21] James Noble, David Clarke, and John Potter. Object
ownership for dynamic alias protection. In Proceedings
of the 32nd International Conference on Technology of
Object-Oriented Languages (TOOL), 1999.

[22] John Plevyak and Andrew Chien. Type directed
cloning for object-oriented programs. In Languages
and Compilers for Parallel Computing. 1996.

[23] Alex Potanin, James Noble, Dave Clarke, and Robert
Biddle. Generic Ownership for Generic Java. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2006.

