
Towards an Existential Types Model for Java
Wildcards

Nick Cameron1, Erik Ernst2, and Sophia Drossopoulou1

1 Imperial College London,
ncameron@doc.ic.ac.uk and scd@doc.ic.ac.uk

2 University of Aarhus,
eernst@daimi.au.dk

Abstract. Wildcards extend Java generics by softening the mismatch
between subtype and parametric polymorphism. Although they are a
key part of the Java 5.0 programming language, a type system including
wildcards has never been proven type sound. Wildcards have previously
been formalised as existential types. In this paper we extend FGJ, a
featherweight formalisation of Java with generics, with existential types.
We prove that this calculus, ∃J, is type sound, and illustrate how it
models wildcards in the Java Programming Language. ∃J is not a full
model for Java wildcards, because it does not support lower bounds for
wildcards. We discuss why ∃J can not be easily extended with lower
bounds, and how full Java wildcards could be modelled in a type sound
way.

1 Introduction

Wildcards [5,14] have been part of the Java programming language since Septem-
ber 2004 (version 5.0) and are an important part of its type system. Wildcard
types make Java generics more usable and powerful and are used throughout
the Java libraries. However, to our knowledge, the issue of type safety has not
yet been resolved for wildcards. WildFJ [8] describes Java 5.0 fairly closely but
has not yet been proven sound. Therefore, a better understanding of the type
theoretic background of wildcards is necessary.

Existential types can hide information, and they have been used for abstract
data types, modules, and similar features [3,9,11]. They have also been used to
model variance in generics and virtual types [7]. Existential types are reckoned
to model Java wildcards (another language feature for subtype variance) even
more closely [8,14].

We take a step towards solving the open and difficult question of type sound-
ness for Java with wildcards by extending FGJ [6] with existential types, rather
than modeling wildcards directly. In the resulting calculus, ∃J, existentially quan-
tified type variables may have upper, but not lower, bounds. Naively adding lower
bounds causes problems with the proof of type soundness. Existential types in
∃J are quantified by a single type variable. To fully express wildcard types from
Java, multiple type variables must be quantified together. Thus, ∃J does not

provide a complete solution, but we consider it a first, significant step toward
proving type soundness of wildcards.

Our contributions are a description, formalisation and type soundness proof
of an object-oriented programming language with existential types for subtype
variance, ∃J; we discuss the correspondence between Java wildcards and existen-
tial types, and the difficulties in using an existential types calculus as a full model
for Java with wildcards, in particular, including lower bounds in the calculus.

The next section briefly describes existential types and Java wildcards. Sec-
tion 3 presents ∃J and the soundness proof. Section 4 discusses the relation of
∃J to Java with wildcards, and outlines future work. Finally, Sect. 5 concludes.

2 Background

In this section we describe the previous uses and formalisations of existential
types, how existential types have been used to address the subtype variance
problem, and introduce Java wildcards.

2.1 Existential Types for Abstract Data Types

Existential types have been widely studied as a polymorphic type system used
for data abstraction and information hiding, for example to model abstract data
types and objects [2,3,4,9,10,11]. Here, type variables may be quantified exis-
tentially; a quantified type hides information about the actual type (the witness
type). An entity with such a type can be regarded as an opaque package. It can
be created by a close (or pack) expression; the components of the package can
only be used (opened or unpacked) in a context that preserves the hiddenness
of the witness type. Partial knowledge of the witness type can be expressed and
preserved via bounds on the existentially quantified type variables.

2.2 Parametric Polymorphism in Java

Parametric polymorphism is implemented in Java using generics [1,5], whereby
classes (and types) or methods may be parameterised by a list of type parame-
ters; the actual type parameters may be class types (possibly parameterised) or
type variables. For example, a very simple container class could be defined as:

class Box<X> {
X data;
X get() { return data; }
void set(X x) { data = x; }

}

X is the formal type parameter. The box type may be instantiated as Box<String>,
Box<Object>, etc. When a type variable Y is in scope, we may also write Box<Y>.

Type variables may be given bounds using the extends keyword. For exam-
ple, assuming a hierarchy of classes where Poodle extends Dog, extends Animal,

2

extends Object, we may declare class BoundedBox<X extends Dog>. In this
case, we may instantiate the types BoundedBox<Poodle> and BoundedBox<Dog>,
but not BoundedBox<Animal> or BoundedBox<Object>.

Generic types are invariant with respect to subtyping of their parameters; in
the above example Box<Poodle> is not a subtype of Box<Dog>. Although this
relationship (covariance) seems logical and desirable, it is actually unsound:

Box<Poodle> boxOfPoodles = new Box<Poodle>();
Box<Dog> boxOfDogs = boxOfPoodles; \\illegal in Java
boxOfDogs.set(new Rottweiler());
Poodle p = boxOfPoodles.get(); \\arghh! We got a rottweiler!

2.3 Existential Types for Subtype Variance

There have been many different proposals for incorporating subtype variance in
parametrically polymorphic languages in a type safe way. These include struc-
tural virtual types [13], variant parametric types [7] and wildcards [14]. Variant
parametric types of [7] are the closest to (and the inspiration for) Java wildcards;
the authors used a restricted form of existential types for their formalism and
proof of type soundness. Variant parametric types were extended into wildcard
parametric types in [15], where an alternative formalism to [8] is presented.

Existential types were first mentioned in the context of subtype variance in
[12], the concept was developed in [7]. Bounded existential types allow type safe
variance since they only reveal partial information about the hidden types.

2.4 Wildcards

A wildcard type [14] is a type with ? (the wildcard) as an actual type parameter,
for example Box<?> — a box of some type. The wildcard parameter may be
bounded above (eg Box<? extends Dog>) or below (Box<? super Dog>); the
former type acts covariantly with respect to its type parameter (Box<Poodle> is
a subtype of Box<? extends Dog>), the latter contravariantly (Box<Animal> is
a subtype of Box<? super Dog>).

Crucial to understanding wildcards is that a wildcard hides the actual type
argument given for the corresponding type parameter—so ? in Box<? super
Dog> may hide the type Animal, e.g., when an actual value of this type is new
Box<Animal>(). The wildcard’s bound is a bound on this actual type argument,
not a bound on the type of objects with the hidden type— so this box may
contain a new Cat(), even if ? hides Animal and not Cat. The type checker
cannot know which type ? hides, so no other value than null can be used as
an argument to set; conversely, every type that ? can hide is a subtype of Dog,
and the value returned by get is again a subtype of that, so it is safe to consider
that return value to have type Dog.

Variant parametric types [7] and wildcards express similar types; for example,
using variant parametric types Box<? extends Dog> is expressed as Box<+Dog>.

3

Both mechanisms can be formalised using existential types [7]. However, as op-
posed to variant parametric types, wildcards allow capture conversion. This is
the conversion of a wildcard to a type variable. The effect of capture conver-
sion is wildcard capture: a wildcard type may be used where a generic type is
expected. This is most obvious during method invocation:

<X> List<X> m1(Box<X> x) {..}
List<?> m2(Box<?> y) { return this.m1(y); }

The use of y as a Box<X> in the call this.m1(y) is legal even though Box<?>
is not a subtype of Box<X> (this would be unsound [5]); the wildcard is capture
converted to a fresh type variable which is substituted for X. Such an example
could not be represented in a type correct way using variant parametric types
[7].

In the same way that existential types can be used to model variant para-
metric types, they can be used as a model for wildcards [8,14]. Furthermore, it
has been suggested that wildcard capture is equivalent to opening an existential
type [8,14]. This correspondence is explored in more depth in Sect. 4.1.

3 ∃J
In this section we describe ∃J, an object oriented language with generics and
existential types. We extended FGJ (itself an extension of Featherweight Java)
[6], by adding existential quantification to the syntax of types, and expressions
which introduce and eliminate existential types.

Our notation (and style of presentation) is taken from FGJ. In particular,
the overbar notation (x) denotes a sequence of tokens, ∅ represents the empty
sequence, and an overbar over multiple tokens dentotes a sequence of these to-
kens (for example, a b for a0 b0, a1 b1, a2 b2,...). We use a comma to con-
catenate two sequences and implicitly require that there are no duplicates in
the resulting sequence. We use � as shorthand for extends in Java. Like FGJ,
and in contrast to Java, ∃J does not include type inference. Hence, all actual
type parameters (to methods and classes) must be specified explicitly. We allow
alpha-renaming of type variables in the usual (scope respecting) way.

3.1 Syntax

The syntax of ∃J is given in Fig. 1. The interesting expressions are open and
close: they are discussed in more depth in Sect. 3.4. Values include new expres-
sions as in FGJ, and also close expressions to allow existentially typed values.
The syntax of types consists of class types (N) and type variables (X) (together
non-existential types (R)) and existentially quantified types. Existential types
are quantified by a single type parameter rather than a sequence of them (as
in [8]). This takes after traditional existential types, for example [11], together
with the well-formedness constraints on environments this restricts the expres-
sivity of ∃J compared to Java, see also Sect. 4.1. A further distinction is made

4

Q ::= class C<∆> � N {T f; M} class declarations
M ::= <∆> T m(T x) {return e;} method declarations
e ::= x | this | e.f | e.<P>m(e) | new C<P>(e) expressions

| open e, δ as x in e | close e with δ hiding T

v ::= new C<P>(v) | close v with δ hiding T values

N ::= C<P> class types
R ::= N | X non-existential types

T, U ::= ∃δ.R types

K ::= ∃δ.N non-variable types

V ::= ∃δ.X variable types
P ::= K | X type parameters

δ ::= X� T type bounds

∆ ::= δ type environments
Γ ::= x:T environments

x, y variables
C, D, E, F classes
X, Y, Z type variables

Fig. 1. Syntax of ∃J.

between variable (V) and non-variable (K) types. This simplifies the formalism
and proofs but does not introduce any further types. Type parameters exclude
only types of the form ∃X� T.V, this simplifies the soundness proof and follows
Java. Environments (Γ) map variables to their types, and type environments
(∆) map type variables to their bounds.

3.2 Subtyping

∆ ` R <: R
(∃S-Reflex)

∆ ` R <: R′′ ∆ ` R′′ <: R′

∆ ` R <: R′

(∃S-Trans)

∆ ` X <: ∆(X)
(∃S-Bound)

class C<X � P′> � N {...}
∆ ` C<P> <: [P/X]N

(∃S-Sub-Class)

∆ ` U <: U′ ∆, X �U ` T <: T′

∆ ` ∃X �U.T <: ∃X �U′.T′

(∃S-Full)

Fig. 2. ∃J subtyping.

Subtyping (Fig. 2) is very similar to that of FGJ. The use of type R ensures
that most subtype rules only apply to non-existential types; only ∃S-Full (taken
from the ‘full’ variant of System F<) applies to existential types (∃S-Full may
also apply to an existential type if the upper bound of a type variable is existen-
tially quantified; however, it does not allow an existential type to be the subtype
of a non-existential type). This gives that two existential types are subtypes if
their quantified types are subtypes (covariance) and if the more precise type has
a more restrictive upper bound.

5

Note that, in contrast to the Java programming language, there is no subtype
relation between existential and non-existential types (except as bounds — an
unquantified type variable may have an existential type as its upper bound).
This is explained in more detail in Sect. 4.1.

∆ ` Object ok
(∃F-Object)

X ∈ ∆
∆ ` X ok
(∃F-Var)

class C<X� T> � N {...}
∆ ` P ok ∆ ` P <: [P/X]T

∆ ` C<P> ok
(∃F-Class)

∆ ` T ok ∆, X �T ` U ok

∆ ` ∃X �T.U ok
(∃F-Exist)

` ∅ ok
(∃F-Empty)

∆ ` T ok ` ∆ ok

` ∆, X �T ok
(∃F-Env)

Fig. 3. ∃J well-formed types and type environments.

3.3 Well-formedness

Well-formedness rules for types and type environments are given in Fig. 3. The
well-formedness rules for type-environments are more constrictive than may be
expected for Java. Under our rules foward references are entirely forbidden;
however, in Java some forward references are allowed (for example in Java <X
extends Box<Y>, Y extends Box<X>> would be a legal set of formal type pa-
rameters, but <X extends Y, Y extends X> would not be, whereas in ∃J both
are illegal). Although there is some loss of expressivity, this is not an important
restriction in ∃J because the interesting effect is felt when such forward references
appear in existential types. However, existential types with forward references
are not permitted in ∃J since existential quantification only occurs with a single
type variable (as opposed to a type environment, ie multiple type variables, as
in WildFJ [8]). The issue is side stepped in GJ [6], where type variables may
only have a class type as an upper bound.

3.4 Typing

The type rules are given in Fig. 5. Of interest is that we require the receiver in
method call and field access, and the arguments in method call, to have non-
existential type (R). This forces the use of an open expression, corresponding to
wildcard capture in Java.

6

fields(Object) = (∅; ∅)

class C<X� T> � N {T f; M}
fields([P/X]N) = (U; g)

fields(C<P>) = (U, [P/X]T; g, f)

class C<X� T> � N {T f; M} m 6∈ M

mBody(m, C<P>) = mBody(m, [P/X]N)

class C<X� T> � N {T f; M}
<∆> U m(U x) {return e0;} ∈ M

mBody(m, C<P>) = (x; [P/X]e0)

class C<X� T> � N {T f; M} m 6∈ M

mType(m, C<P>) = mType(m, [P/X]N)

class C<X� T> � N {T f; M}
<∆> U m(U x) {return e0;} ∈ M

mType(m, C<P>) = [P/X](∆.U→ U)

bound∆(K) = K

∆(X) = T

bound∆(X) = bound∆(T)

bound∆(∃δ.T) = ∃δ.bound∆,δ(T)

Fig. 4. Auxiliary functions for ∃J.

∆;Γ ` x : Γ (x)
(∃T-Var)

∆;Γ ` this : Γ (this)
(∃T-This)

∆;Γ ` e : R
fields(bound∆(R)) = (T; f)

∆;Γ ` e.fi : Ti
(∃T-Field)

∆ ` P ok ∆;Γ ` e : R
mType(m, bound∆(R)) = X� T.U→ U

∆;Γ ` e : U′ ∆ ` U′ <: [P/X]U

∆ ` P <: [P/X]T

∆;Γ ` e.<P>m(e) : [P/X]U
(∃T-Invk)

∆ ` C<P> ok
fields(C<P>) = (U; f)

∆;Γ ` e : T ∆ ` T <: U

∆;Γ ` new C<P>(e) : C<P>
(∃T-New)

∆;Γ ` e1 : U′ ∆ ` U′ <: ∃δ.U
∆ ` ∃δ.U ok ` ∆, δ ok

∆, δ;Γ, x:U ` e2 : T′ ∆, δ ` T′ <: T
δ = X� T′′ X 6∈ fv(T)

∆;Γ ` open e1, δ as x in e2 : T
(∃T-Open)

δ = X �T′ ∆ ` T′ ok
∆;Γ ` e : U′ ∆ ` U′ <: [T/X]U

∆ ` T <: [T/X]T′

∆;Γ ` close e with δ hiding T : ∃δ.U
(∃T-Close)

Fig. 5. ∃J expression typing rules.

The open expression (∃T-Open) takes an expression with existential type
(e1) and unpacks it in the scope of a second sub-expression (e2). The unpacked
expression is bound to a fresh variable x. The second expression is type checked
under the surrounding environment (Γ) extended with x:U, and the surrounding
type environment (∆) extended with the quantifying type variable (δ).

The close expression (∃T-Close) is also type checked in a similar way to
traditional existential types. An expression is ‘packed’ in a close expression and

7

∆,∆′ ` U, U ok ` ∆,∆′ ok class C<X� T> � N {...}
∆,∆′; x:U, this:C<X> ` e0:T ∆,∆′ ` T <: U override∆,∆′(m, N,∆

′.U→ U)

∆ ` <∆′>U m(U x) {return e0} ok in C

(∃T-Method)

mType(m, N) = ∆′.T→ T′

∆ ` T <: T′

override∆(m, N,∆′.T→ T)
(∃T-Override)

mType(m, N) undefined

override∆(m, N,∆′.T→ T)
(∃T-OverrideUndef)

∆ ` N, T ok ` ∆ ok ∆ ` M ok in C

fields(N) = (T′, f′) f ∩ f′ = ∅
` class C<∆> � N {T f; M} ok

(∃T-Class)

Fig. 6. ∃J class and method typing rules.

fields(C<P>) = (U; f)

new C<P>(v).fi ; vi
(∃R-Field)

mBody(m, C<P′>) = (x; e0)

mType(m, C<P′>) = X� T.U → U

new C<P′>(v′).<P>m(v) ;

[v/x, new C<P′>(v′)/this, P/X]e0

(∃R-Invk)

open close v with X �T1 hiding T, X �T2 as x in e ; [T/X, v/x]e

(∃R-Open-Close)

Fig. 7. ∃J computation rules.

its type is quantified with the given type variables. We must keep track of the
hidden and hiding types in the syntax to ensure sound reduction.

The typing rules for methods and classes are given in Fig. 6. They make use
of the well-formedness rules for type environments (Fig. 3), these are specified
externally of the method and class typing rules to simplify the soundness proof.

3.5 Operational Semantics

The operational semantics of ∃J is given through computation (Fig. 7) and
congruence rules. The latter are straightforward and have been elided. ∃R-Open-
Close is taken almost directly from the world of existential types [11]. It is used
to reduce an open expression where the first sub-expression (the expression that
is opened) is a close value, it eliminates the close and open expressions and the
scoped sub-expression of the open expression is the result (with the appropriate
substitutions). For example:

open
close new Box<Poodle>() with X extends Dog hiding Poodle,

8

X extends Dog as x in
this.<X>m(x);

reduces to: this.<Poodle>m(new Box<Poodle>()). The close subexpression in
the initial expression has type ∃X� Dog.Box<X>. Assuming m has type <X� Dog>.Box<X>→
Dog then both the intial and reduced expressions have type Dog.

3.6 Type Soundness

Type soundness is proven by showing progress and preservation (subject reduc-
tion) properties. These state that any well-typed expression is a value or can be
reduced to a well-typed expression, and that if a well-typed expression reduces
to a second expression then the type of this expression is a subtype of the type
of the original expression.

The main difficulty in proving type soundness has been accomodating the
open and close expressions, and adjusting the subtyping and well-formedness
rules for handling bounds. We expended a great deal of effort attempting to
handle lower bounds in the system, and to handle upper bounds as similarly as
possible to Java. We had several generations of lemmas to handle the various
attempts. In the end we have a system that is closer to traditional existential
types and a little further from Java. The parts of the proofs that were most
interesting were often the open expression cases (for example in the proof of
theorem 2). Those involving detailed manipulation of type environments (for
example our substitution lemma) were the hardest to get entirely correct.

Theorem 1 (progress). For any well-formed expression, e where ∅; ∅ ` e : T,
either there exists e′ where e ; e′ or e is a value, v.

Theorem 2 (subject reduction). For any ∆, Γ where ` ∆ ok and ∆ ` Γ ok
and any expressions e and e′ where e ; e′ and ∆;Γ ` e : T then ∆;Γ ` e′ : T′

and ∆ ` T′ <: T.

4 Discussion

We now discuss the relation between ∃J and Java with wildcards, the difficulties
in adding lower bounds to ∃J and how a complete, type sound model for Java
with wildcards may be developed.

4.1 ∃J as a Model for Java Wildcards

The correspondence between wildcard types and existential types has been dis-
cussed elsewhere [8,14]. In summary, a wildcard becomes an existentially quanti-
fied type variable, quantified immediatly outside the class type. Wildcard bounds
are trnslated into bounds on the quantified type variable. Multiple wildcards are
translated into unique type variables. The following table gives an overview:

9

Box<?> −→ ∃X.Box<X>
Box<Box<?>> −→ Box<∃X.Box<X>>
Box<? extends Dog> −→ ∃X� Dog.Box<X>
Pair<?,?> −→ ∃X.∃Y.Pair<X,Y>

∃J has similar subtyping properties, between existential types, as wildcard
types in Java (covariance with respect to the bound, subclassing, reflexivity
and transitivity). However, as opposed to Java, there is no subtyping between
existential and non-existential types. So, although Box<Dog> is a subtype of
Box<?> in Java, it is not a subtype of ∃X.Box<X> in ∃J. To translate Java to
∃J, wherever such subtyping occurs, a close expression is inserted; for example
(omitting bounds for clarity):

void m1(Box<?> x) {...}
void m2(Box<Dog> y) { this.m1(y); }

is translated to:
void m1(∃X.Box<X> x) {...}
void m2(Box<Dog> y)} { this.m1(close y with X hiding Dog); }

Similarly, wildcard capture, performed implicitly in Java, is translated to
the surface syntax in ∃J. It has previously been noted that wildcard capture
is similar to opening an existential type [8,14]; in ∃J both an open and close
expression is required, the latter to prevent the escape of any introduced type
variable; for example:

<X>Box<X> m1(Box<X> x) {...}
Box<?> m2(Box<?> y) { this.m1(y); }

is translated to (note how opening the existential type allows us to provide an
actual type parameter to m1):

<X>Box<X> m1(Box<X> x) {...}
∃Z.Box<Z> m2(∃Y.Box<Y> y) {
open y,Y as y2 in

close
this.<Y>m1(y2) \\has type Box<Y>

with Z hiding Y; \\has type ∃Z.Box<Z>
}
One interpretation of this relationship is that Java wildcards provide exis-

tential types to the main stream, without the hassle of opening and closing. The
remaining challenge is then to show that this does not compromise type safety.

The most obvious obmission in ∃J is the lack of lower bounds. Moreover, ∃J
can not model certain classes and types due to the restrictive combination of
quantifying existential types by a single type parameter and the well-formedness
rules for environments. In Java classes may be specified where formal type pa-
rameters are used as actual type parameters in bounds, for example class C<X

10

� C<Y>, Y � C<X>>..., by complex use of wildcard capture, wildcard (exis-
tential) types can be expressed that have a similar relationship in the bounds.
Addressing this issue is further work, but should be less significant than lower
bounds for the soundness proof.

4.2 Problems with Adding Lower Bounds

The first problem is that by straightforwardly adding lower bounds and the ob-
vious lower bound subtyping rule, we allow (by transitivity) subtypes that are
not linked by subclassing. For example, imagine A and B are direct subclasses
of Object, by declaring a type variable with lower bound A and upper bound
B, within the scope of the type variable we may deduce that A is a subtype of
B, even though this is clearly unsound. Restricting the lower bound of a type
variable to a subclass of the upper bound is the obvious solution, but this is
complicated by the lack of subtyping between existential and non-existential
types and can (undesirably) restrict the bounds of a type variable. Note that
in Java the bounds of a wildcard are restricted: only one may be specified and
the other may be inherited from the definition; this simplifies the situation. The
underlying problem here is that in translating Java to ∃J we assume that sub-
typing involving an existential and non-existential type can be translated using
a close expression as in section 4.1. However, there are cases where subtyping
occurs without any expression being present, for example, when checking the
well-formedness of bounds.

The second problem is that, in the presence of the obvious lower bound
subtyping rule, a subtype of a non-existential type may be existentially quan-
tified. This is not possible in ∃J (by the ∃S-Bound an existential type may be
the supertype of a non-existential type, but this is benign), but the property is
necessary to prove soundness. This is apparent in the congruence case for field
access and method call; here the type rules require a sub-expression with non-
existential type, if (as is possible with lower bounds) this sub-expression may
reduce to an expression with existential type, then the type rule may not be
applied, and the subject reduction property does not hold.

4.3 Towards a Full Model for Wildcards

As explained above, an extension of ∃J to model full Java with wildcards, and
proof of type soundness is not straightforward.

We see three possibilites: the first possibilty would use large step semantics.
This would address the following problems: if we extend ∃J in a näıve way to
include lower bounds, then we can have expressions which have non-existential
type, but which reduce in one step to an expresssion with existential type. If
the original expression appeared in a context which required an expression with
non-existential type, eg field access, then subject reduction would not hold. On
the other hand, if we expect all values to have non-existential type then the
problem should not arise with large step semantics.

11

The second possibilty would incorporate the close expression into subtyping
(as is done in WildFJ) and replacing the open expression with a capture expres-
sion that performs an open and close as descibed in Sect. 4.1. We have previously
explored this approach and found problems with the proof of type soundness;
however, these may be solvable.

The third possibilty would involve proving type soundness for a system more
in the spirit of WildFJ, that is, without explicit open and close expressions.
Restrictions on syntax could help with the well-formedness checks.

5 Conclusion

We have shown that existential types used for variance in a generic, object-
oriented setting are type sound. Our model includes explicit open and close
expressions and therefore goes further to model the unique features of Java
wildcards than earlier systems [7]. We have discussed the correspondence be-
tween ∃J and Java with wildcards, and highlighted the difficulties associated
with adding lower bounds to our calculus. ∃J is a first, significant step towards
proving soundness for Java with wildcards.

Acknowledgements We’d like to thank the anonynous reviewers of this paper
and a previous, rejected, paper for their many helpful and thorough comments.

References

1. Gilad Bracha. Generics in the Java programming language, 2004.
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf.

2. Luca Cardelli and Xavier Leroy. Abstract types and the dot notation. Research
report 56, DEC Systems Research Center, 1990.

3. Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys, 17(4):471–522, 1985.

4. Giorgio Ghelli and Benjamin Pierce. Bounded existentials and minimal typing.
Theoretical Computer Science, 193(1-2):75–96, 1998.

5. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification Third Edition. Addison-Wesley, Boston, Mass., 2005.

6. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
a minimal core calculus for Java and GJ. ACM Trans. Program. Lang. Syst.,
23(3):396–450, 2001. An earlier version of this work appeared at OOPSLA’99.

7. Atsushi Igarashi and Mirko Viroli. Variant parametric types: A flexible subtyping
scheme for generics. ACM Trans. Program. Lang. Syst., 28(5):795–847, 2006. An
earlier version appeared as “On variance-based subtyping for parametric types” at
(ECOOP’02).

8. Mads Torgersen and Erik Ernst and Christian Plesner Hansen. Wild FJ. In 12th
International Workshop on Foundations of Object-Oriented Languages (FOOL 12),
Long Beach, California, New York, NY, USA, 2005. ACM Press.

9. John C. Mitchell and Gordon D. Plotkin. Abstract types have existential types.
In POPL ’85: Proceedings of the 12th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 37–51, New York, NY, USA, 1985.
ACM Press.

12

10. Benjamin C. Pierce. Bounded quantification is undecidable. In POPL ’92: Pro-
ceedings of the 19th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 305–315, New York, NY, USA, 1992. ACM Press.

11. Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge,
MA, USA, 2002.

12. Kresten Krab Thorup. Genericity in Java with virtual types. In ECOOP ’97:
European Conference on Object-Oriented Programming, volume 1241, pages 444–
471. Springer, 1997.

13. Kresten Krab Thorup and Mads Torgersen. Unifying genericity - combining the
benefits of virtual types and parameterized classes. In ECOOP ’99: Proceedings
of the 13th European Conference on Object-Oriented Programming, pages 186–204,
London, UK, 1999. Springer-Verlag.

14. Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter von der Ahé, Gilad
Bracha, and Neal Gafter. Adding wildcards to the Java programming language.
Journal of Object Technology, 3(11):97–116, 2004. Special issue: OOPS track at
SAC 2004, Nicosia/Cyprus.

15. Mirko Viroli and Giovanni Rimassa. On access restriction with java wildcards.
Journal of Object Technology, 4(10):117–139, 2005. Special issue: OOPS track at
SAC 2005, Santa Fe/New Mexico. The earlier version in the proceedings of SAC
’05 appeared as Understanding access restriction of variant parametric types and
Java wildcards.

e ; e′

e.f ; e′.f
(∃RC-Field)

e ; e′

e.<T>m(e) ; e′.<T>m(e)
(∃RC-Inv-Recv)

ei ; e′i
e.<T>m(...ei...) ; e.<T>m(...e′i...)

(∃RC-Inv-Arg)

ei ; e′i
new C<T>(...ei...) ; new C<T>(...e′i...)

(∃RC-New-Arg)

e1 ; e′1
open e1 as x:N in e2 ; open e′1 as x:N in e2

(∃RC-Open)

e ; e′

close e with δ hiding T ; close e′ with δ hiding T

(∃RC-Close)

Fig. 8. ∃J congruence rules.

13

A Proof of type soundness

In all these lemmas and theorems we assume that the program is well formed,
that is ` class C... ok for all classes, C.

A.1 Progress

Lemma 1 (Canonical Forms). Take any ∆, Γ and v. If ∆,Γ ` v : T then
T 6= X. If ∆;Γ ` v : N, then v = new N(v). If ∆;Γ ` v : ∃X� U.T then
v = close v′ with X� U hiding T′ and ∆;Γ ` v′ : U′ and ∆ ` U′ <: [T′/X]T.

Proof. By inspection of the type rules and syntax of values, with induction on
the type rules to prove the second case.

Lemma 2. For any non-variable type, K, type environment ∆ and types T and
U. If ∆ ` K <: ∃X� U.T then K = ∃X� U′.K′.

Proof. By simple induction over the subtype rules.

Theorem 1 (progress). For any well-formed expression, e where ∅; ∅ ` e : T,
either there exists e′ where e ; e′ or e is a value, v.

Proof. By structural induction on the derivation of ∅; ∅ ` e : T using lemma 1.
Since Γ = ∅, we can not apply rules ∃T-This or ∃T-Var. The only interesting
case is ∃T-Open, where we note that we only need to apply the inductive hy-
pothesis to the typing judgment of e1, and thus do not have problems with the
environments of the typing judgement of e2. Also, if e1 is a value, then it must
have the form close... since a subtype of an existential type is an existential
type (if it is a non-variable type, which it is, by lemma 1, by lemma 2) and an
existentially typed expression must have this form by lemma 1. Furthermore, we
know that if the expression is in this form then the two type variables are the
same (as required by the reduction rule) by rules ∃T-Open and ∃T-Close.

Detailed hand-written proofs of some cases can be found at:
http://www.doc.ic.ac.uk/∼ncameron/existsj/Th1.pdf.

A.2 Preservation

Lemma 3 (weakening).

1. If ∆ ` T′ <: T then ∆, δ ` T′ <: T.
2. If ∆ ` T ok then ∆, δ ` T ok.
3. If ∆;Γ ` e : T then ∆, δ;Γ ` e : T
4. If bound∆(T) = K then bound∆,δ(T) = K.

Proof. By structural induction on the derivation of ∆ ` T′ <: T, ∆ ` T ok,
∆;Γ ` e : T and bound∆(T) respectively. All cases are trivial or require applica-
tion of earlier sub-lemmas.

14

Lemma 4 (Subtyping preserves field types). For any non-existential types
R and R′ and environment ∆ where ` ∆ ok, if fields(bound∆(R)) = (U; f) and
∆ ` R′ <: R then fields(bound∆(R′)) = (U′; f′) and for all i such that 0 ≤ i < |U|:
U′i = Ui and fi = f′i.

Proof. By structural induction on the derivation of ∆ ` R′ <: R. The interesting
cases are:
Case ∃S-Sub-Class: By induction on the fields function.
Case ∃S-bound: By noting that bound∆(∆(X)) = bound∆(X) by the defini-
tion of bound().

Lemma 5 (Subtyping preserves method type). For any non-existential
types R and R′ and method m and environment ∆ where ` ∆ ok. If mType(m, bound∆(R)) =
<X� T>U→ U and ∆ ` R′ <: R then mType(m, bound∆(R′)) = <X� T>U→ U′ and
X� T ` U′ <: U.

Proof. By structural induction on the derivation of ∆ ` R′ <: R. The interesting
cases are:
Case ∃S-Sub-Class: By ∃T-Override.
Case ∃bound: By noting that bound∆(∆(X)) = bound∆(X) by the definition
of bound().

Lemma 6 (Substitution lemma). For all ∆, ∆′, X, T, where ∆ = ∆1, X� U,∆2

and none of X appear in ∆1 and ` ∆ ok and ∆′ = ∆1, [T/X]∆2 and ∆1 `
T <: [T/X]U:

1. If bound∆(T) = K then bound∆′([T/X]T) = K′ and ∆′ ` K′ <: [T/X]K
2. If fields(bound∆(R)) = (U; f) then fields(bound∆′([T/X]R)) = (U′; f′) and

for all i such that 0 ≤ i < |U|: U′i = [T/X]Ui and fi = f′i.
3. For all methods m, if ∆1 ` R ok and mType(m, bound∆(R)) = <X′� T′>U′ → U

then mType(m, bound∆′([T/X]R)) = <X′� [T/X]T′>[T/X]U′ → U′ and X′� T′ `
U′ <: [T/X]U.

4. If ∆ ` U <: U′ then ∆′ ` [T/X]U <: [T/X]U′.
5. If ∆ ` T ok then ∆′ ` [T/X]T ok.
6. If ∆;Γ ` e : U then ∆′; [T/X]Γ ` [T/X]e : U′ and ∆′ ` U′ <: [T/X]U.

Proof. 1. By structural induction on the derivation of bound∆(T). The inter-
esting case is the inductive case where T = Y. There are three sub-cases:
Y ∈ dom(∆1) gives [T/X]Y = Y, the result is easy by the inductive hypothe-
sis; Y ∈ dom(∆2) again gives [T/X]Y = Y, we observe that ([T/X]∆)(Y) =
[T/X](∆(Y)) and then apply the inductive hypothesis; Y = Xi gives [T/X]Y =
Ti, by simple induction we have that ∆′ ` Ti <: [T/X]Ui ⇒ ∆′ ` bound∆′(Ti) <:
bound∆′([T/X]Ui).
A detailed hand-written proof can be found at:
http://www.doc.ic.ac.uk/∼ncameron/existsj/Lemma6.pdf.

15

2. By lemma 6.1 and noting that since fields(bound∆(R)) is defined then bound∆(R) =
N for some N. By easy induction over the subtype rules we have that two class
types in a subtype relationship are subclasses. Finally by simple induction
over the derivation of fields(N) we get the necessary relationship between
the reults of applying fields and that fields([T/X]N) = [T/X]fields(N).
A detailed hand-written proof can be found at:
http://www.doc.ic.ac.uk/∼ncameron/existsj/Lemma6.pdf.

3. By a similar argument to lemma 6.2.
A detailed hand-written proof can be found at:
http://www.doc.ic.ac.uk/∼ncameron/existsj/Lemma6.pdf.

4. By structural induction on the derivation of ∆ ` T <: T′.
5. By structural induction on the derivation of ∆ ` T ok. A similar argument

as in lemmas 6.1 and 6.2 is used for case ∃F-Var.
6. By structural induction on the derivation of ∆;Γ ` e : U. The non-trivial

cases are:
Case ∃T-Field: By lemmas 4 and 6.2.
Case ∃T-Invk: By lemma 6.5, inductive hypothesis, lemmas 5 and 6.2
and lemma 6.5.
Case ∃T-New: By lemmas 6.2 and 6.5.
Case ∃T-Open: By lemma 6.5 and 6.4 and transitivity and noting that
since T is well-formed, it can not introduce free type variables when substi-
tuted into a type.
Case ∃T-Close: By the inductive hypothesis and ∃S-Full.

Lemma 7. For all ∆, R, T, if ∆ ` T <: R then T = R′.

Proof. By simple induction on the derivation of ∆ ` T <: R.

Lemma 8 (Term substitution preserves typing). If ∆;Γ, x:U ` e : T and
∆;Γ ` e′ : U′ and ∆ ` U′ <: U where ` ∆ ok then ∆;Γ ` [e′/x]e : T′ and
∆ ` T′ <: T.

Proof. By structural induction on the derivation of ∆;Γ, x:U ` e : T.
Case ∃T-Var: e = y, gives subcases x = y and x 6= y.
Case ∃T-This: As case ∃T-Var.
Case ∃T-Field: By lemmas 7 and 4.
Case ∃T-Invk: By lemmas 7, 5 and 6.5.
Case ∃T-New: Easy.
Case ∃T-Open: Note that due to scoping, x in the lemma is distinguished
from x in the open expression. The proof is easy, by applying the inductive hy-
pothesis to each sub-expression and transitivity to the results, the final result is
given by reflexivity.
Case ∃T-Close: By the inductive hypothesis, transitivity and ∃S-Full.

Lemma 9. For all ∆, C<P>, m, such that ` ∆ ok, ∆ ` C<P> ok, mType(m, C<P>) =
<X� U′>U → U, mBody(m, C<P>) = (x; e), there exists U′ such that ∆ ` U′ ok
and ∆, X� T; x:U, this:C<P> ` e : U′ and ∆, X� T ` U′ <: U.

16

Proof. By induction on the derivation of mBody(m, C<P>).
Base case: We first use T-Class and T-Method for m in C. The result is
given by applying lemmas 6.6 and 6.4.
Inductive case: We use the typing and well-formedness rules for classes,
followed by lemmas 3 and 6.5 to get the premises of the inductive hypothesis,
applying this and observing that ∆ ` C<P> <: [P/Y]N (where N is the direct
superclass of C) by ∃T-Sub-Class, and finally lemma 8 and transitivity, gives
the result.

A detailed hand-written proof can be found at:
http://www.doc.ic.ac.uk/∼ncameron/existsj/Lemma8.pdf.

We define ∆ ` Γ ok as ∀x:T ∈ Γ : ∆ ` T ok.

Theorem 2 (subject reduction). For any ∆, Γ where ` ∆ ok and ∆ ` Γ ok
and any expressions e and e′ where e ; e′ and ∆;Γ ` e : T then ∆;Γ ` e′ : T′

and ∆ ` T′ <: T.

Proof. By structural induction on the derivation of e ; e′. The interesting cases
are:
Base case ∃R-Invk: By application of ∃T-Invk and ∃T-New to find T.
We then apply lemmas 9, 3 and 8 and 6.6 to find T′ and finally lemmas 3 and
6.4 and transitivity to obtain the subtype relation.
Base case ∃R-Open-Close: By first noting that ∆ ` ∃X� U.T <: ∃X� U′.T′

implies ∆ ` U <: U′ and ∆, X� U ` T <: T′, then applying lemmas 6.4, 6.6, 8,
and transitivity and noting that X 6∈ dom(∆) (from well-formedness of ∆, X...
from ∃T-Open) and ∆ ` Γ ok implies [T/X]Γ = Γ .
Inductive case ∃RC-Field: By lemmas 4 and 7.
Inductive case ∃RC-Inv-Recv: By lemmas 5, 6.4 and 7.
Inductive case ∃RC-Open: By the inductive hypothesis and transitivity.
Inductive case ∃RC-Close: By the inductive hypothesis and transitivity.

Detailed hand-written proofs of some cases can be found at:
http://www.doc.ic.ac.uk/∼ncameron/existsj/Th2.pdf.

17

