
On Subtyping, Wildcards, and Existential Types

Nicholas Cameron
Victoria University of Wellington
ncameron@ecs.vuw.ac.nz

Sophia Drossopoulou
Imperial College London

scd@doc.ic.ac.uk

ABSTRACT
Wildcards are an often confusing part of the Java type sys-
tem: the behaviour of wildcard types is not fully specified by
subtyping, due to wildcard capture, and the rules for type
checking are often misunderstood. Their very formulation
seems somehow ‘different’ from the rest of the Java type
system, which is based on a simple, nominal hierarchy.

We investigate subtyping in models for Java with and
without generics and wildcards. We separate subclassing
from subtyping, unify subtyping for class and wildcard types
using existential types, and show that Java wildcards emerge
naturally from the combination of inclusion and parametric
polymorphism.

1. INTRODUCTION
The original Java type system was mostly straightforward:

classes indicate types, a class name stands for objects of that
class and its subclasses; therefore, subclasses are also sub-
types and, furthermore, inclusion polymorphic. For exam-
ple, the declaration class Circle extends Shape {...} gives
that Circle is a subtype of Shape and that a variable with
type Circle can be used anywhere that a variable of type
Shape is expected.

However, the type system of Java 5.0 is less straightfor-
ward: parameterised classes take invariant type parame-
ters, e.g., List<Circle> is not a subtype of List<Shape>.
On the other hand, wildcards introduce variance into the
type system, e.g., List<? extends Circle> is a subtype
of List<? extends Shape>. As a result, the type system
is complex and sometimes surprising, and the behaviour of
wildcards seems incongruous with the rest of the system.

Wildcard types in Java are usually modelled using exis-
tential types [21, 17, 9, 16]. Existential types straightfor-
wardly give the correct typing and subtyping behaviour for
wildcards. Existential types have also been used, in several
ways [1, 5, 12, 14, 20, 6], to describe the behaviour of class
types in object-oriented languages. In this paper we use ex-
istential types to model both class and wildcard types. As a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTfJP ’09, July 6 2009, Genova, Italy
Copyright 2009 ACM 978-1-60558-540-6/09/07 ...$10.00.

result, we obtain a type system where existential types are
an integral and natural part, rather than an afterthought.
We distinguish subtyping from polymorphism, the latter is
only given by existential types. Therefore, polymorphism
(whether arising through subclasses or through wildcards)
is treated in a uniform way. By contrast in previous work
[9], polymorphism due to subclassing is represented implic-
itly, whereas polymorphism due to wildcards is represented
explicitly using existential types.

We generalise the concept of class names to brands; a
brand is an intermediate stage in the description of types.
A brand does not describe a set of values, but is used to
specify types, which do. Brands are defined in terms of sub-
typing, but we treat polymorphism as a property of types
(as opposed to brands). In Java, types and brands (as well
as subtyping and polymorphism) are conflated: Shape is
a type in the variable declaration Shape x, but a brand
in the parametric type C<Shape> or the class declaration
class C<X extends Shape>

We describe our system in three stages: In Sect. 2, we in-
troduce a system which corresponds to Featherweight Java
(FJ) [15], using existential types to model Java types ex-
pressed through classes. In Sect. 3, we add type parameters,
and thus have a system which corresponds to Featherweight
Generic Java (FGJ) [15]. In Sect. 4, we allow a slight gen-
eralisation to the syntax of brands, giving a system that
corresponds to Java with wildcards.

The contributions of this paper are: a unified model of
subtyping in Java using existential types; a proof that our
pre-generics model is equivalent with Featherweight Java
[15], the de-facto standard model of the Java type system; a
discussion of subtyping in Java based on this unified model.

2. JAVA 1.4 TYPES AND SUBTYPES
In Java 1.4 (i.e., Java without generics), types consist

of class or interface1 names. Subtype polymorphism (also
called inclusion polymorphism) follows directly from sub-
classing. Subtyping in Java is nominal, as opposed to struc-
tural: subtyping follows from the declared relation between
classes, rather than from the structure of objects.

Existential types have been used to model inclusion poly-
morphism in foundational models of object-oriented languages
[1, 5, 12, 14, 20]. These calculi generally model objects as
records of data and functions and use structural subtyping.
An alternative approach for nominal type systems is to as-
sume that class types are exact (i.e., subclassing does not

1We do not consider interfaces in this paper.

lead to polymorphism) [6] and use existential types to re-
store polymorphism. Class types in Java can be thought
of as such existential types [16, 7]. For example, the type
@Shape (an exact Shape) denotes only objects which instan-
tiate Shape; the type ∃X<: Shape.X (we use <: to denote an
upper bound on a type variable) denotes objects with an
unknown type which is a subclass of Shape, this includes
instantiations of Shape and Circle, and is equivalent to the
Java type Shape. We follow this second approach.

2.1 ∃FJ
In this section we present ∃FJ, a small model for Java,

similar in scope and style to Featherweight Java (FJ) [15].
In ∃FJ, class names and types are not conflated, and the
distinction between subclassing and subtyping is made ex-
plicit.

e ::= x | e.f | e.m(e) | new C(e) expressions
v ::= new C(v) values

Q ::= class C ¢ N {T f; M} class declarations
M ::= T m(T x) {return e;} method declarations

N ::= C class names
P ::= N | X brands
T ::= ∃Σ.X source types

∆::= X <: P type environments
Σ ::= X<: P binding type environments
Γ ::= x:T environments
A ::= P | T | X general types

x variables
C, D classes
X, Y free type variables
X , Y bound type variables

Figure 1: Syntax of ∃FJ.

The syntax of ∃FJ is given in Fig. 1. Expressions and
class declarations follow FJ (we use the shorthand ¢ for
extends in Java); the differences are in the syntax of types.
We distinguish brands (P) from source types (T, which are
existential types bounded by brands; we call these source
types since they are the only types which correspond to Java
types, and thus may appear in a source program) and be-
tween subclassing (given by brand subtyping) and subtype
polymorphism (given by existential subtyping)2. General
types (A) may be either brands or source types.

Our motivation is to have a nominal equivalent of the dis-
tinction between records for the implementation of objects
and existential types for their interface types, found in older
existential types models for objects [1, 5, 12, 14, 20]. As
in systems with exact types, subtyping is in the formalism
(in our case to compare the bounds of existential types),
but does not directly lead to polymorphism: only existen-
tial types are polymorphic and thus polymorphism is made
explicit in the types.

2That our actual subtype relation is not strictly divided is a
convenience of the formalisation: it allows for easier exten-
sion to the wildcards system and would allow for a simple
extension with exact types.

As a convenience, we differentiate between bound and
free type variables in the syntax: free type variables use
an upper-case, type-writer font (X), (existentially) bound
variables use an upper-case, curly font (X)3. When an exis-
tential type is unpacked, bound variables must be replaced
with free variables. Distinguishing between bound and free
variables allows us to syntactically avoid type variables be-
ing used as source types.

X ∈ ∆

∆ ` X ok
(F-Var)

class C ¢ D {...}

∆ ` C ok
(F-Class)

∆ ` X<: [X/X]P ok ∆, X<: [X/X]P ` [X/X]X ok

∆ ` ∃X<: P.X ok
(F-Exist)

Figure 2: ∃FJ well-formed types.

∆ ` A <: A
(S-Reflex)

∆ ` A <: A′′

∆ ` A′′ <: A′

∆ ` A <: A′

(S-Trans)

∆ ` X <: ∆(X)
(S-Bound)

class C ¢ N {...}

∆ ` C <: N
(S-Sub-Class)

∆, X¢ [X/X]P ` [X/X]A <: A′ X ∩ fv(A′) = ∅
∆ ` ∃X<: P.A <: A′

(S-Open)

∆ ` A <: [A/X]P fv(A) ⊆ dom(∆)

∆ ` [A/X]A <: ∃X<: P.A

(S-Close)

Figure 3: ∃FJ subtyping.

Rules for well-formed types (which have the shape ∆ `
A ok) are given in Fig. 2 and are unsurprising. Subtyping
(∆ ` A <: A) is defined in Fig. 3. Rules S-Close and S-
Open introduce and eliminate existential types, respectively.
They are almost identical to those found in Pizza [19], and
EX impl and EX upto [22]. Type variables may only appear
in a subtype derivation if introduced by a subtyping rule
because they cannot be written by the programmer as source
types. We omit a well-formed enviornment judegment (∆ `
∆ ok) as it is complex to define in a sound manner [9], we
only assume that it gives the standard properties concerning
free variables.

Rules for type checking expressions (∆; Γ ` e : A) are given
in Fig. 4. Most are standard. Receivers of field accesses and
method calls must have types which are class names; since
these are not source types, these must be found by existential
elimination, subsumption, and subtyping.

We are only interested in typing derivations which con-
clude by assigning source types to expressions. However,

3In a well-formed type, ‘free’ variables are in fact bound in
an environment, ∆.

∆ ` C ok fields(C) = f

fType(f, C) = T ∆; Γ ` e : T

∆;Γ ` new C(e) : ∃X<: C.X
(T-New)

∆;Γ ` x : Γ(x)
(T-Var)

∆;Γ ` e : N
fType(f, N) = T

∆;Γ ` e.f : T
(T-Field)

∆;Γ ` e : N
mType(m, N) = T→ T

∆;Γ ` e : T

∆;Γ ` e.m(e) : T
(T-Invk)

∆, ∆′; Γ ` e : A′

∆, ∆′ ` A′ <: A
∆ ` A ok

∆;Γ ` e : A
(T-Subs)

∆;Γ ` e : ∃X<: P.X
∆, X<: [X/X]P; Γ ` e : [X/X]X

(T-Elim)

Figure 4: ∃FJ typing rules.

intermediate steps in the derivation may assign brands to
expressions.

Following Tame FJ [9], T-Subs allows type variables which
are not used in the type of the conclusion to be removed
from the type environment on the left of the turnstile. In
conjunction with S-Close, this allows existential types to be
introduced, and unpacked type variables to be removed from
the environment. For example, if x has type X (bounded by
C), x can be packed to ∃X<:C.X and X can be removed from
the typing environment. T-Elim allows existential types to
be eliminated in typing derivations.

We have elided field and method lookup functions, oper-
ational semantics, and rules for type checking methods and
classes. These follow FJ and can be found in appendix A.

2.2 Equivalence of ∃FJ and FJ
We have proved that ∃FJ is equivalent to FJ [15]; that

is, a program will type check in ∃FJ if and only if it type
checks in FJ. More formally:

Theorem For all x, C, e, and D,
∅; x:∃X<:C.X ` e : ∃X<:D.X in ∃FJ,
if and only if x:C ` e : D in FJ.

We prove this theorem by defining a more general trans-
lation of ∃FJ types into FJ types (type variables are trans-
lated to their bounds, and class names in FJ to class names
in ∃FJ) and then proving a more general version of this the-
orem. Required lemmas are given in appendix C and full
proofs can be downloaded from

http://www.doc.ic.ac.uk/˜ncameron/papers/
cameron ftfjp09 proofs.pdf

3. JAVA WITH GENERICS
In Java, parametric polymorphism is implemented by gener-

ics [2, 3, 13]. Classes, types, and methods may be param-
eterised by formal type parameters; actual type parameters
are provided when a class is instantiated or a method is
called. For example, a list class is parameterised by the

type of items in that list, this type variable can then be
used in the body of the class:

class List<X> {

X get() {...}

void set(X x) {...}

List<X> copy {...}

}

A list type can be instantiated as a list of strings: List

<String>; a list of shapes: List<Shape>; or a list of any
other type. Type checking member access takes into account
the actual types; so, for example, the return type of get

called on an object of type List<Shape> will be Shape.
The types that may instantiate a formal parameter may

be restricted by giving the parameters a bound. This is
done using the extends keyword. For example, class C<X

extends Shape>... requires that any type which instanti-
ates X is a subtype of Shape. Whilst type checking the body
of class C, we can assume that X is a subtype of Shape.

3.1 ∃FGJ

e ::= x | e.f | e.<P>m(e) | new C<P>(e) expressions
v ::= new C<P>(v) values

Q ::= class C<X <: P>¢ N {T f; M} class declarations
M ::= <X <: P>T m(T x) {return e;}

method declarations

N ::= C<P> class names
P ::= N | X brands
T ::= ∃Σ.X source types

Figure 5: Syntax of ∃FGJ.

Generics can be easily added to ∃FJ, similarly to adding
generics to FJ in FGJ [15]. The existential types parts of
the calculus are not affected. The syntax of a language with
generics, ∃FGJ, is given in Fig. 5 (we elide the syntax of
type environments and syntactic variables). Changes to the
syntax and semantics are highlighted.

In ∃FGJ, we extend brands beyond simple class names
to parameterised classes and type variables. The system
of brand subtyping represents the inheritance relation and
its point-wise extension with type parameters. As in ∃FJ,
brands do not constitute a source type, nor does brand sub-
typing directly give subtype polymorphism.

Actual type parameters are brands because a type pa-
rameter is a description of a type, not the type of a variable.
This is reflected in the invariance of generic types, and is dis-
cussed further in Sect. 5. For example, to instantiate a list
one would use the brand List<Dog> which gives the source
type ∃X<:List<Dog>.X . Note that List<∃X<:Dog.X> is
not syntactically valid. Class definitions are encoded by en-
coding types used in the definition; for example, the list
given above is encoded as:

class List<X> {

∃Z<:X.Z get() {...}

void set(∃Z<:X.Z x) {...}

∃Z<:List<X>.Z copy {...}

}

Most type rules do not change. Those that do are modified
only to add type parameters, they become the same as in
FGJ [15]:

class C<X <: P>¢ D<P′′>{...}

∆ ` P′ ok ∆ ` P′ <: [P′/X]P

∆ ` C<P′> ok

(F-Class)

class C<X <: P>¢ N {...}

∆ ` C<P′> <: [P′/X]N

(S-Sub-Class)

∆ ` C<P> ok fields(C) = f

fType(f, C<P>) = T ∆;Γ ` e : T

∆;Γ ` new C<P>(e) : ∃X<: C<P>.X
(T-New)

∆;Γ ` e : N ∆;Γ ` e : T

mType(m<P>, N) = <X <:P′>T→ T

∆ ` P ok ∆ ` P <: P′

∆;Γ ` e.<P>m(e) : T

(T-Invk)

The auxiliary functions, class and method typing rules,
and the operational semantics gain type parameters, but are
otherwise boring; they are given in appendix A. No other
rules are changed.

4. WILDCARDS
Java wildcards [21, 17] are actual type parameters indi-

cated by ‘?’. They may be given upper or lower bounds using
extends or super. Wildcards facilitate subtype variance:
whereas generic types are invariant (e.g., List<Cirlce> is
not a subtype of List<Shape>), wildcard types may be co-
or contravariant or both (e.g., List<? extends Cirlce> is a
subtype of List<? extends Shape> and List<? super Shape>

is a subtype of List<? super Cirlce>). The syntax and
behaviour of wildcard types are, superficially, unrelated to
other Java types.

Wildcard types in Java have been modelled using existen-
tial types, in fact this has become the standard approach
[17, 9]. In these models, wildcards are represented as ex-
istentially quantified type variables; for example, List<?>

can be represented as ∃X.List<X>4. Bounds on wildcards
are represented as bounds on the quantified variable (e.g.,
List<? extends Shape> as ∃X<:Shape.List<X>).

Variables with existential type are treated as opaque pack-
ages and they must be unpacked (that is, have quantified
type variables replaced with fresh type variables) before use.
In Java, this is known as capture conversion. For example,
to call get on List<? extends Shape>, the type is capture
converted to List<Z> where Z is fresh and has the upper
bound Shape. The type of the get method is looked up for
List<Z> and its return type is found to be Z. To prevent
this variable escaping, the Z-free supertype Shape is used as
the type of the expression.

e ::= x | e.f | e.<P>m(e) | new C<P>(e) expressions
v ::= new C<P>(v) values

Q ::= class C<X <: P> ¢ N {T f; M} class declarations
M ::= <X <: P> T m(T x) {return e;}

method declarations

N ::= C<P> class names

P ::= ∃Σ.N | X | X brands
T ::= ∃Σ.X source types

Figure 6: Syntax of ∃WFJ.

4.1 ∃WFJ
We formalise Java with wildcards as ∃WFJ, a minor gener-

alisation of ∃FGJ. In ∃WFJ, existential quantification fulfils
two roles: enabling inclusion polymorphism (quantification
at the type level) and variance of parametric types (quan-
tification at the brand level). Both cases are governed by
the same rules.

The syntax of ∃WFJ is given in Fig. 6. The only changes
from the syntax of ∃FGJ (Fig. 5) are a natural general-
isation of the syntax of types: brands may also be exis-
tentials or bound variables. This allows encoded wildcard
types to be used as bounds on quantified variables in types
(e.g., C<?> encoded as the type ∃X<:(∃Y.C<Y>).X) and
brands (e.g, C<? extends D<?>>, encoded as the brand
∃X<: (∃Y.D<Y>).C<X>), and for deeply nested wildcard types
(e.g., C<C<?>>, encoded as the brand C<∃X.C<X>>).

The only changes to the type system follow this change:
F-Exist and T-Elim are generalised following the generali-
sation of brands. This very small and natural generalisation
to ∃FGJ gives a type system which supports Java wildcards
without any additional work:

∆ ` X<:[X/X]P ok

∆, X<:[X/X]P ` [X/X]A ok

∆ ` ∃X<: P.A ok
(F-Exist)

∆;Γ ` e : ∃X<: P.A

∆, X<:[X/X]P; Γ ` e : [X/X]A

(T-Elim)

Type checking with wildcard types follows type checking
with class types, discussed in Sect. 2.1. In particular, field
or method lookup is unchanged, and for a receiver that is
assigned an unquantified brand type, the use of type rules
T-New, T-Field, or T-Invk are identical. An encoded
wildcard type involves two levels of quantification; therefore,
it must be unpacked twice (using T-Elim). It is also possible
that the result type of T-Field or T-Invk will have to be
re-packed to avoid escaping type variables. For example,
when calling the copy method on a list with type List<?>,
encoded as ∃X<:(∃Y.List<Y>).X , method lookup will be
performed on the brand List<Z>, where Z is fresh. The
result of method lookup will be ∃X<:(List<Z>).X , which
will be re-packed to ∃X<:(∃Y.List<Y>).X by T-Subs and
the subtyping rules.

4We omit bounds for clarity, we could use Object as the
upper bound in this case.

Restrictions. ∃WFJ is not a full model for Java with wild-
cards: we do not support lower bounds or type parameter
inference at method calls, and we do not define well-formed
type environments. Lower bounds can easily be added as in
Tame FJ, they are elided to simplify the formalisation. Type
inference of method parameters is discussed in Sect. 5.2. The
intuition of well-formed environments is that all types in the
range of the environment are well-formed. However, this is
complicated to define due to the presence of F-bounds [11].
We have done this in Tame FJ [9], but this requires strati-
fication of subtyping, which we have avoided for clarity.

Properties. We expect that ∃WFJ corresponds with (a
subset of) Tame FJ [9], in the same way as ∃FJ with FJ
[15]. However, we have not yet attempted to prove this and
suspect an intermediate form of ∃WFJ, with a formalisation
more similar to Tame FJ, will be required. The correspon-
dence can be stated formally:

Conjecture For all ∆, x, P, e, and P,
∆; x:∃X<:P.X ` e : ∃X<:P.X in ∃WFJ,
if and only if ∆; x:P ` e : P|∅ in (some subset of)
Tame FJ.

5. DISCUSSION
In this section we discuss some interesting aspects of Java

wildcards in the light of ∃WFJ, and some details of ∃WFJ
itself.

5.1 Wildcards

Explaining Subtyping. By making subtype polymorphism
explicit using existential quantification, we hope to make un-
derstanding generic and wildcard types easier. Programmers
may expect generic types to be covariant because class types
implicitly involve polymorphism: it could seem strange that
Circle is a subtype of Shape, but List<Circle> is not a
subtype of List<Shape>. By making subtype polymorphism
explicit it becomes clear, there is only polymorphism at a
given level of nesting if there is quantification at that level:
∃X<:Circle.X is a subtype of ∃X<:Shape.X , indicated
by the existential quantification; ∃X<:List<Circle>.X is
not a subtype of ∃X<:List<Shape>.X because the param-
eters are not quantified. The related wildcard types are
subtypes: ∃X<:(∃Y<:Circle.List<Y>).X is a subtype of
∃X<:(∃Y<:Shape.List<Y>).X , indicated by existential quan-
tification of both the outermost types and the type param-
eters.

Surface Syntax. We have shown that ∃WFJ emerges natu-
rally from the combination of inclusion and parametric poly-
morphism. However, ∃WFJ is an existential types based
model for Java wildcards, and there are some significant dif-
ferences between the surface syntax of Java and ∃WFJ. The
underlying semantics of the two systems are identical, and
so our result is relevant. But existential types are signifi-
cantly more expressive than wildcard types (there are types
in Java which can be expressed but not denoted in Java, this
is not the case in ∃WFJ); therefore, it is possible that there
is a better surface syntax.

5.2 ∃WFJ

Type Parameter Inference. ∃WFJ does not model the

type parameter inference that can take place at method call
sites. This is modelled in Tame FJ [9] and other models.
Java programs which make use of type parameter inference
can be encoded in ∃WFJ (see appendix D) because the
receiver’s type can be capture converted, even though the
types of parameters cannot, due to the lack of type param-
eter inference.

Type parameter inference has to be added on top of the
naturally emerging calculus. However, the fundamental fea-
ture of capture conversion does appear for receivers. We
view type parameter inference as a useful convenience, ad-
ditional to the underlying model, which does not introduce
any interesting typing features.

Unpacking Existential Types. In our calculi, existential
types can be unpacked both in subtyping (using S-Open)
and typing (using T-Elim). In ∃FJ and ∃FGJ, only one of
these rules is required; however, in ∃WFJ both are required.
This is one way in which wildcards do not follow simply from
the unification of inclusion and parametric polymorphism.
We have put both rules into ∃FJ and ∃FGJ because there is
no reason to prefer one at the expense of the other. It also
makes philosophical sense to have both rules (we should be
able to consider subtyping without typing, but unpacking
should be a separate operation from subsumption), even if
they are not required for expressivity.

Type Soundness. ∃WFJ is not formalised with type sound-
ness in mind; in its present form, the soundness proofs for
Tame FJ [9] cannot easily be extended to ∃WFJ. We believe
∃WFJ is sound, but that proving this directly would require
some technical changes to the calculus. We would need to
stratify subtyping as in Tame FJ and introduce a normal
form for existential types which would require changes to
the type rules, such as adding guarding environments, as in
Tame FJ.

Packing and Unpacking in Subtyping. We chose to use
separate rules to pack and unpack types during subtyping
(S-Close and S-Open in Fig. 3). We believe that this sepa-
ration of concerns is clearer than combining both operations
into a single rule (S-Env), as in Wild FJ [17] and Tame FJ
[9]. These two approaches are equivalent, as shown in the
first author’s thesis [8]. The S-Env rule in our calculi would
be:

Y ∩ fv(∃X <: P.A) = ∅ fv(A) ⊆ dom(∆), Y

∆, Y<: [Y/Y]P′ ` [Y/Y]A <: [A/X]P

∆ ` ∃Y<: P′.[A/X]A <: ∃X<: P.A

6. RELATED WORK
Existential types have been used in many systems to model

object-oriented types [1, 5, 12, 14, 20]. The main difference
between these approaches and ∃WFJ is that we use nomi-
nal, rather than structural types. Also, we wish to model
subtyping properties rather than encapsulation properties
and so we abstract the interface of an object rather than its
implementation. In both ways we are more similar to the ex-
istential types proposed to model hash types and non-exact
types [6, 7, ?, 16, 4]. It would be easy to add exact types to
∃WFJ, we would extend the syntax of types with @P, and
extend subtyping with the axiom ∆ ` @P <: P.

Existential types have been used to explain [21] and model
[17, 9, 10, 22] wildcard types in Java; our treatment of wild-

card types follow these earlier formalisations. Our innova-
tion is to also use existential types to model subtype poly-
morphism.

The language Unity [18] supports a mixture of nominal
and structural subtyping in order to provide a strong and
flexible type system. As in ∃WFJ, a brand forms part of a
type, not a type in its own right, and subclassing does not
directly give subtyping. However, the relation of brands to
types, and subclassing to subtyping are very different.

7. CONCLUSION AND FUTURE WORK
In this paper we have modelled the behaviour, in particu-

lar subtyping and polymorphism, of Java types in a unified
way using existential types. We have discussed several in-
teresting aspects of this approach and shown that, for class
types at least, our approach is equivalent to the standard
model for Java.

Future Work. We wish to show type soundness directly
for ∃WFJ, and prove the conjecture in Sect. 4.1. In general,
we are interested in investigating further properties of exis-
tential types and subtyping in object-oriented languages.

Acknowledgement. We would like to thank Alex Sum-
mers for suggesting the distinction between bound and free
variables, and for many interesting and useful discussions
about wildcards, and the anonymous reviewers for their close
reading and useful comments. The first author’s work was
funded in part by a Build IT Postodoctoral fellowship; the
second author was funded in part by the Information Society
Technologies program of the European Commission, Future
and Emerging Technologies under the IST-2005-015905 MO-
BIUS project.

8. REFERENCES
[1] Mart́ın Abadi, Luca Cardelli, and Ramesh

Viswanathan. An Interpretation of Objects and
Object Types. In Principles of Programming
Languages (POPL), 1996.

[2] Gilad Bracha. Generics in the Java Programming
Language, 2004.
http://java.sun.com/j2se/1.5/pdf/generics-
tutorial.pdf.

[3] Gilad Bracha, Martin Odersky, David Stoutamire, and
Philip Wadler. Making the Future Safe for the Past:
Adding Genericity to the Java Programming
Language. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 1998.

[4] K. B. Bruce and J. N. Foster. LOOJ: Weaving LOOM
into Java. Lecture Notes in Computer Science,
3086:389–413, 2004.

[5] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce.
Comparing Object Encodings. Information and
Computation, 155(1-2), 1999.

[6] Kim B. Bruce, Martin Odersky, and Philip Wadler. A
Statically Safe Alternative to Virtual Types. In
European Conference on Object Oriented Programming
(ECOOP), 1998.

[7] Kim B. Bruce, Leaf Petersen, and Adrian Fiech.
Subtyping Is Not a Good “Match” for Object-Oriented
Languages. In European Conference on Object
Oriented Programming (ECOOP), 1997.

[8] Nicholas Cameron. Existential Types for Variance —
Java Wildcards and Ownership Types. PhD thesis,
Imperial College London, 2009.

[9] Nicholas Cameron, Sophia Drossopoulou, and Erik
Ernst. A Model for Java with Wildcards. In European
Conference on Object Oriented Programming
(ECOOP), 2008.

[10] Nicholas Cameron, Erik Ernst, and Sophia
Drossopoulou. Towards an Existential Types Model
for Java Wildcards. In Formal Techniques for
Java-like Programs (FTfJP), 2007.

[11] Peter Canning, William Cook, Walter Hill, Walter
Olthoff, and John Mitchell. F-Bounded Quantification
for Object-Oriented Programming. In Functional
Programming Languages and Computer Architecture
(FPCA), 1989.

[12] Kathleen Fisher and John C. Mitchell. Notes on
Typed Object-Oriented Programming. In Symposium
on Theoretical Aspects of Computer Science (STACS),
1994.

[13] James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha. The Java Language Specification Third
Edition. Addison-Wesley, Boston, Mass., 2005.

[14] Martin Hofmann and Benjamin C. Pierce. A Unifying
Type-Theoretic Framework for Objects. In Symposium
on Theoretical Aspects of Computer Science (STACS),
1994.

[15] Atsushi Igarashi, Benjamin C. Pierce, and Philip
Wadler. Featherweight Java: a Minimal Core Calculus
For Java and GJ. ACM Trans. Program. Lang. Syst.,
23(3):396–450, 2001. An earlier version of this work
appeared at OOPSLA’99.

[16] Atsushi Igarashi and Mirko Viroli. Variant Parametric
Types: A Flexible Subtyping Scheme for Generics.
Transactions on Programming Languages and
Systems, 28(5):795–847, 2006. An earlier version
appeared as “On variance-based subtyping for
parametric types” at European Conference on Object
Oriented Programming (ECOOP) 2002.

[17] Mads Torgersen and Erik Ernst and Christian Plesner
Hansen. Wild FJ. In Foundations of Object-Oriented
Languages (FOOL), 2005.

[18] Donna Malayeri and Jonathan Aldrich. Integrating
Nominal and Structural Subtyping. In European
Conference on Object Oriented Programming
(ECOOP), 2008.

[19] M. Odersky and P. Wadler. Pizza into Java:
Translating Theory into Practice. In Principles of
Programming. Languages (POPL), 1997.

[20] Benjamin C. Pierce and David N. Turner. Simple
Type-Theoretic Foundations for Object-Oriented
Programming. Journal of Functional Programming,
4(2):207–247, 1994.

[21] Mads Torgersen, Christian Plesner Hansen, Erik
Ernst, Peter von der Ahé, Gilad Bracha, and Neal
Gafter. Adding Wildcards to the Java Programming
Language. Journal of Object Technology, 3(11):97–116,
2004. Special issue: OOPS track at SAC 2004,
Nicosia/Cyprus.

[22] Stefan Wehr and Peter Thiemann. Subtyping
Existential Types. In Formal Techniques for Java-like
Programs (FTfJP), 2008.

APPENDIX
A. ELIDED DEFINITIONS

In this section we define the auxiliary functions, method
and class typing rules, and operational semantics for ∃FJ
and ∃FGJ.

fields(Object) = ∅

class C ¢ D {T f; M}

fields(D) = g

fields(C) = g, f

class C ¢ N {T f; M}

fType(fi, C) = Ti

class C ¢ N {T f; M}

f 6∈ f

fType(f, C) = fType(f, N)

class C ¢ N {T f; M}

m 6∈ M

mBody(m, C) = mBody(m, N)

class C ¢ N {T f; M}

U m(U x) {return e0;} ∈ M

mBody(m, C) = (x; e0)

class C ¢ N {T f; M}

m 6∈ M

mType(m, C) = mType(m, N)

class C ¢ N {T f; M}

U m(U x) {return e0;} ∈ M

mType(m, C) = U→ U

Figure 7: Auxillary functions for ∃FJ.

class C ¢ N {...}

∅ ` T, T ok ∅; x:T, this:∃X<: C.X ` e:T

override(m, N, T→ T)

` T m(T x) {return e} ok in C

(T-Method)

mType(m, N) = T→ T

override(m, N, T→ T)
(T-Override)

mType(m, N) undefined

override(m, N, T→ T)
(T-OverrideUndef)

∅ ` N, T ok ` M ok in C

class C ¢ N {T f; M}

(T-Class)

Figure 8: ∃FJ method and class typing rules.

fields(C) = f

new C(v).fi ; vi

(R-Field)

v = new C(v′)
mBody(m, C) = (x; e0)

v.m(v) ; [v/x, v/this]e0

(R-Invk)

e ; e′

e.f ; e′.f
(RC-Field)

ei ; e′i
new C(...ei...) ; new C(...e′i...)

(RC-New-Arg)

e ; e′

e.m(e) ; e′.m(e)
(RC-Inv-Recv)

ei ; e′i
e.m(...ei...) ; e.m(...e′i...)

(RC-Inv-Arg)

Figure 9: ∃FJ reduction rules.

fields(Object<>) = ∅

class C<X <: P>¢ D<P′>{T f; M} fields(D) = g

fields(C) = g, f

class C<X <: P>¢ N {T f; M}

fType(fi, C<P′>) = [P′/X]Ti

class C<X <: P>¢ N {T f; M} f 6∈ f

fType(f, C<P′>) = fType(f, [P′/X]N)

class C<X <: P>¢ N {T f; M} m 6∈ M

mBody(m, C<P′>) = mBody(m, [P′/X]N)

class C<X <: P>¢ N {T f; M}

<Y¢ P′′>U m(U x) {return e0;} ∈ M

mBody(m, C<P′>) = (x; [P′/X]e0)

class C<X <: P>¢ N {T f; M} m 6∈ M

mType(m, C<P′>) = mType(m, [P′/X]N)

class C<X <: P>¢ N {T f; M}

<Y¢ P′′>U m(U x) {return e0;} ∈ M

mType(m, C<P′>) = [P′/X](<Y¢ P′′>U→ U)

Figure 10: Auxillary functions for ∃GJ.

∆′ = Y <: P class C<X...>¢ N {...}

∆ ` ∆′ ok ∆, ∆′ ` T, T ok
∆, ∆′; x:T, ∃X <: C<X>.X ` e:T

override(m<Y>, N, <Y <: P>T→ T)

∆ ` <Y <: P>T m(T x) {return e} ok in C

(T-Method)

mType(m<X>, N) = <X <: P>T→ T

override(m<X>, N, <X <: P>T→ T)
(T-Override)

mType(m<X>, N) undefined

override(m<X>, N, <X <: P>T→ T)
(T-OverrideUndef)

∆ = X <: P ∅ ` ∆ ok
∆ ` N, T ok ∆ ` M ok in C

class C<X <: P>¢ N {T f; M}

(T-Class)

Figure 11: ∃FGJ method and class typing rules.

fields(C) = f

new C<P>(v).fi ; vi

(R-Field)

v = new N(v′) mBody(m<P>, N) = (x; e0)

v.<P>m(v) ; [v/x, v/this]e0

(R-Invk)

e ; e′

e.f ; e′.f
(RC-Field)

ei ; e′i
new C<P>(...ei...) ; new C<P>(...e′i...)

(RC-New-Arg)

e ; e′

e.<P>m(e) ; e′.<P>m(e)
(RC-Inv-Recv)

ei ; e′i
e.<P>m(...ei...) ; e.<P>m(...e′i...)

(RC-Inv-Arg)

Figure 12: ∃FGJ reduction rules.

B. FEATHERWEIGHT JAVA
In this section we define Featherweight Java (FJ) [15] us-

ing the notation used elsewhere in this paper. FJ is defined
in figures 13 – 18. The main differences between these def-
initions and the definition in [15] is that we factor out a
subsumption rule in the type rules, use an fType function,
and use slightly different notation throughout; for example,
we use T f;, rather than T f;. We also elide casts.

e ::= x | e.f | e.m(e) | new C(e) expressions

Q ::= class C ¢ N {T f; M} class declarations
M ::= T m(T x) {return e;} method declarations

v ::= new C(v) values

N ::= C class names
T ::= N types

Γ ::= x:T environments

x variables
C, D classes

Figure 13: Syntax of FJ.

fields(Object) = ∅

class C ¢ D {T f; M}

fields(D) = g

fields(C) = g, f

class C ¢ N {T f; M}

fType(fi, C) = Ti

class C ¢ N {T f; M}

f 6∈ f

fType(f, C) = fType(f, N)

class C ¢ N {T f; M}

m 6∈ M

mBody(m, C) = mBody(m, N)

class C ¢ N {T f; M}

U m(U x) {return e0;} ∈ M

mBody(m, C) = (x; e0)

class C ¢ N {T f; M}

m 6∈ M

mType(m, C) = mType(m, N)

class C ¢ N {T f; M}

U m(U x) {return e0;} ∈ M

mType(m, C) = U→ U

Figure 14: Auxillary functions for FJ.

∆ ` T <: T′′ ∆ ` T′′ <: T′

∆ ` T <: T′

(S-Trans)

∆ ` T <: T
(S-Reflex)

class C ¢ N {...}

∆ ` C <: N
(S-Sub-Class)

Figure 15: FJ subtyping.

class C ¢ D {...}

∆ ` C ok
(F-Class)

Figure 16: FJ well-formed types.

∆ ` C ok fields(C) = f

fType(f, C) = D ∆;Γ ` e : D

∆;Γ ` new C(e) : C
(T-New)

∆;Γ ` x : Γ(x)
(T-Var)

∆;Γ ` e : C
fType(f, C) = D

∆;Γ ` e.f : D
(T-Field)

∆;Γ ` e : C
mType(m, C) = D→ D

∆;Γ ` e : D

∆;Γ ` e.m(e) : D
(T-Invk)

∆;Γ ` e : C′

∆ ` C′ <: C
∆ ` C ok

∆;Γ ` e : C
(T-Subs)

Figure 17: FJ typing rules.

class C ¢ N {...}

∅ ` T, T ok x:T, this:C ` e:T

override(m, N, T→ T)

` T m(T x) {return e} ok in C

(T-Method)

mType(m, N) = T→ T

override(m, N, T→ T)
(T-Override)

mType(m, N) undefined

override(m, N, T→ T)
(T-OverrideUndef)

∅ ` N, T ok ` M ok in C

class C ¢ N {T f; M}

(T-Class)

Figure 18: FJ method and class typing rules.

C. TRANSLATION TO FJ
We prove that ∃FJ and FJ [15] are equivalent, that is:

Theorem For all x, C, e, and D, ∅; x:∃X<:C.X `
e : ∃X<:D.X if and only if x:C ` e : D.

JCK∆ = C

JXK∆ = J∆(X)K∆

J∃X<: C.X K∆ = C

Figure 19: Translation from ∃FJ to FJ.

∆ ` A <: A
(S-Reflex)

∆ ` ∆(X) <: A

∆ ` X <: A
(S-Bound)

class C ¢ D {...}

∆ ` D <: A

∆ ` C <: A
(S-Sub-Class)

∆, X<: C ` X <: A′

X 6∈ fv(A′) ∆ ` A′ <: A

∆ ` ∃X<: C.X <: A
(S-Open)

∆ ` A <: C
fv(A) ⊆ dom(∆) ∆ ` ∃X<: C.X <: A′

∆ ` A <: A′

(S-Close)

Figure 20: ∃FJ subtyping without transitivity.

The simple translation of types used in the above defi-
nition applies only to existential types (the only types that
may be written in a ∃FJ program). We generalise this trans-
lation to all types (A) in Fig. 19. We also define transitivity-
free subtyping for ∃FJ in Fig. 20. The above theorem is
then proved by the following lemmas (complete proofs can
be downloaded from
http://www.doc.ic.ac.uk/˜ncameron/papers
/cameron ftfjp09 proofs.pdf):

Lemma For all ∆, Γ, e, and A, if ∆; Γ ` e : A and
∅ ` ∆ ok then JΓK∆ ` e : JAK∆.

Lemma For all C, if ` C ok in FJ, then ∅ ` C ok
and ∅ ` ∃X<:C.X ok in ∃WFJ.

Lemma For all C, if ∅ ` ∃X<:C.X ok in ∃WFJ
then ` C ok in FJ.

Lemma For all C, if ∆ ` A ok and ∅ ` ∆ okin
∃WFJ then ` JAK∆ ok in FJ.

Lemma For all C and D, if ` C <: D in FJ, then
∅ ` ∃X<:C.X <: ∃X<:D.X in ∃WFJ.

Lemma For all C and D, if ∅ ` ∃X<:C.X <: ∃X<:D.X
in ∃WFJ, then ` C <: D in FJ.

Lemma For all ∆, A1, A2, A3, if ∆ ` A1 <: A2 and
∆ ` A2 <: A3 then ∆ ` A1 <: A3 in ∃FJ without
transitivity.

Lemma For all ∆, A1, A2, if ∆ ` A1 <: A2 in ∃FJ
then ∆ ` A1 <: A2 in ∃FJ without transitivity.

Lemma For all ∆, A1, A2, if ∆ ` A1 <: A2 in ∃FJ
without transitivity then ` JA1K∆ <: JA2K∆ in FJ.

D. TYPE PARAMETER INFERENCE AND
WILDCARD CAPTURE

As discussed in Sect. 5.2, we do not support type param-
eter inference and wildcard capture of parameters in ∃WFJ.
A Java program which uses this feature can be encoded in
∃WFJ since ∃WFJ supports wildcard capture of receivers.
For example, consider the following methods:

class C<X> {...}

class D<> {

<X>C<X> m1(C<X> x) {...}

C<?> m2(C<?> y) {

return this.m1(y);

}

}

This can be encoded as

class C<Y> {

...

C<Y> m3(D<> r) {

return r.m3(this);

}

}

class D<> {

<X>C<X> m1(C<X> x) {...}

C<Y> m2(C<?> y) {

return y.m3(this);

}

}

Multiple parameters can be encoded by adding multiple
methods to classes, each method encodes the capture con-
version of one parameter.

