
Variant Ownership with Existential Types

Nicholas Cameron
Imperial College London

ncameron@doc.ic.ac.uk

Sophia Drossopoulou
Imperial College London

scd@doc.ic.ac.uk

Abstract
We propose an ownership types system with existential
quantification of owners, similar to the existential quantifi-
cation of types in models of Java wildcards. This produces
a system with variant ownership types. Using explicit exis-
tential types for variance is more uniform, less ad hoc, and
easier to understand and reason about than previous solu-
tions. Furthermore, we propose using both type and owner-
ship parameters to increase the precision with which variant
types can be specified.

1. Background
Ownership types (in all their various flavours, e.g., [4])
allow for the structuring of objects in the heap according to
some tree or graph. Each object has an owner, denoted as
part of the object’s type. A type may also be parameterised
by contexts, which may be used as owners within the class
definition. For example, consider the list class:

class List<o> {
o:Object<> datum;
owner:List<o> next;

}

The keyword owner denotes the formal owner of the class;
it is used as the actual owner of the next field. o is a formal
context parameter of List; it is used as the owner of datum
and as an actual context parameter of next.

In general, ownership (more precisely, the inside relation
over owners) is invariant with respect to subtyping. That is,
given two types o1:C and o2:C, even if o2 is owned by (i.e.,
is inside) o1, o2:C is not a subtype of o1:C, nor is o1:C a
subtype of o2:C.

Some form of ownership variance is often safe and desir-
able; as found in a restricted form in several systems, e.g.,
‘any’ in the universes type system [5], ? in MOJO [2], and
by using variance annotations [6].

Existing ownership systems are either invariant or offer
some form of more or less ad hoc variance. Existential
types offer a way to implement variance in a uniform and
theoretically well understood manner.

Existential types were first proposed as a mechanism to
model abstraction and data hiding (e.g., in module systems)

[Copyright notice will appear here once ’preprint’ option is removed.]

[7]. An existential type is a polymorphic type where a type
variable is existentially quantified. An existential type ∃X.X
can be read as ‘there exists some type X’, and the type
variable can be thought of as hiding some concrete type.

Existential types have been used in a slightly altered
form in object-oriented programming languages for sub-
type variance, i.e., to soften the mismatch between para-
metric (generics) and inclusion (subclassing) polymorphism.
Similarly to owners, generic types are invariant, that is
List<Fish> is not a subtype of List<Animal>, even if Fish
is a subtype of Animal. Java wildcards use implicit exis-
tential types to allow variance in a type’s parameters; for
example, allowing List<? extends Fish> to be a subtype
of List<? extends Animal>.

2. Language Design
We propose adding existential quantification of owners to
ownership types to implement owner variance. So, for exam-
ple, ∃o.o:Animal1 denotes an Animal object that is owned
by some owner. We use bounds that specify where the owner
must exist within the topology of the heap; for example
∃o → [a b].o:Animal restricts o to be owned by b and
to own2 a. We omit bounds and empty parameter lists in
the examples for clarity.

We also allow parameterisation of types, classes and
methods by types; this lets us express more of the interesting
relationships between owners. For example, we can define
the List class using generics:

class GenericList<X> {
X datum;
owner:GenericList<X> next;

}

We can then use the type this:GenericList<o3:Animal>
to denote a list owned by this, where each item in the list
is an Animal owned by o3. With existential ownership types
this expressivity is extended further: ∃o.o:GenericList
<this:Animal> denotes a list owned by some owner where
each element is owned by this; ∃o1,o2.o1:GenericList
<o2:Animal> denotes a list owned by some owner where each
element is owned by some owner (but each element is owned
by the same owner); ∃o1.o1:GenericList<∃o2.o2:Animal>
denotes a list where each element is owned by some owner,
but the owner of each element may be different. To the best
of our knowledge such expressiveness is not found elsewhere.

1 It is important to note that this type means ∃o.(o:Animal) and
not (∃o.o):Animal; this is important when considering how the
owner is propagated into types used in the class definition.
2 In both cases, we mean either directly or transitively owned.

1 2008/4/30

e ::= x | x.f | x.f = e | x.<a, T>m(e) | new a:C<a, T>(e) |
open e1 as x,o in e2 | close e with o→[b b] hiding a expressions

v ::= close v with o→[b b] hiding r | ι values

Q ::= class C<∆, X> {T f; W} class declarations
W ::= <∆, X> T m(T x) {return e;} method declarations

N ::= a:C<a, T> class types
M ::= N | X non-existential types
T ::= M | ∃∆.N types

a ::= © | o | owner | x actual owners
b ::= a | ⊥ bounds
∆ ::= o→[bl bu] owner environments

Figure 1. Syntax of Jo∃ expressions and types.

We do not support existential quantification of types. A
system supporting existential quantification of types as well
as of owners, would allow very powerful types, e.g.,

∃o1,o2,X→[⊥ o2:Animal].o1:GenericList<X>

We are not sure whether such types are of practical use and
believe most issues are orthogonal to this work; we relegate
their study to further work.

3. Formalisation
To formalise the notion of existential types for owner vari-
ance, we extend a ‘traditional’ single ownership calculus
(e.g., [4]); the result is our minimal language, Jo∃. We add
existential quantification of owners to the syntax of types,
and explicit open and close expressions. In this way, we
follow the more traditional model of existential types [3],
rather than the ‘wildcards’ approach of using implicit pack-
ing and unpacking of existential types, present in subtyping
and capture conversion [1]. In Jo∃ there is a strong distinc-
tion between types and parameters that may be existentially
quantified; thus, the loss of expressivity found when mod-
elling Java wildcards with explicit packing and unpacking
[3] is avoided.

The syntax of Jo∃ is given in Fig. 1; we elide most run-
time syntax and some other detail. Most of the expression
syntax is as might be expected for a Java-like language. We
add open and close expressions to eliminate and introduce
existential types. If e1 in the open expression has existential
type, e.g., ∃o.o:C, then, within the scope of e2, the program-
mer may use o as a formal owner and x as a variable with
type o:C. Thus, an expression with existential type may be
used as a non-existentially typed expression; this is similar
to capture conversion of wildcard types in Java [3].

The close expression wraps a sub-expression (e) with an
existential type by hiding some of the owners present in e’s
type. For example, if e has type this:C, then the expres-
sion close e with o hiding this has the existential type
∃o.o:C.

As might be expected, the operational semantics of
Jo∃ includes a reduction rule to reduce together an open
and close expression. Thus, open (close e with o hiding
this) as x in e′ reduces to [this/o, e/this]e′.

Note that the receiver of field access or method invocation
must be a variable (x, which includes this). Thus we can
substitute x for this when type checking these expressions,
and do not require some form of path types. Expressivity
is not lost since the programmer can always use the open
expression with empty o to act as a ‘let’ expression.

Actual owners (a) may be the distinguished ‘world’ owner
(©), formal owners (o), the object’s owner (owner), or vari-
ables (x). Bounds on formal owners also allow the ‘bottom’

owner, that is the owner that is owned by all objects; it is
used to indicate an owner variable without a lower bound.

Subtyping in Jo∃ follows the full variant of System F<:

with existential types and ∃J [3]. Existential types are sub-
types where the owners in the subtype are more strict
than the owners of the supertype. For example, ∃o →
[⊥ this].o:C is a subtype of ∃o→ [⊥©].o:C, since this
is inside ©. Non-existential types remain invariant. Such
subtyping gives the variance properties that motivate this
work.

4. Conclusion and Future Work
We have shown how existential types may be used for vari-
ance of ownership types. Compared to other systems, we aim
to make Jo∃ less ad hoc and more expressive, and to make
the existential type apparatus more explicit. This explicit
use of existential types and open and close expressions will
make reasoning about properties of the language simpler,
and the connection to previous work more explicit. By using
existential types we also allow owner polymorphic methods
to be handled correctly. Systems that include variance anno-
tations can express types using polymorphic methods that
can not be denoted without explicit existential types.

We have a complete formal definition of Jo∃ and, based
on our earlier work [3], expect this to be sound. We aim
to prove the owners-as-dominators (AKA, deep ownership)
property for Jo∃. Completion of the proofs of soundness and
ownership properties are the next step for us; extensions to
the work could be extending Jo∃ to a multiple ownership
system [2], or to other ownership systems such as ownership
domains or universes [5].

References
[1] Nicholas Cameron, Sophia Drossopoulou, and Erik Ernst. A

Model for Java with Wildcards. In ECOOP, 2008.

[2] Nicholas Cameron, Sophia Drossopoulou, James Noble, and
Matthew Smith. Multiple Ownership. In OOPSLA, 2007.

[3] Nicholas Cameron, Erik Ernst, and Sophia Drossopoulou.
Towards an Existential Types Model for Java Wildcards. In
FTfJP, 2007.

[4] David G. Clarke, John M. Potter, and James Noble.
Ownership Types for Flexible Alias Protection. In OOPSLA,
1998.

[5] W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe
Types. In ECOOP, 2007.

[6] Yi Lu and John Potter. On Ownership and Accessibility. In
ECOOP, 2006.

[7] John C. Mitchell and Gordon D. Plotkin. Abstract Types
have Existential Types. In POPL, 1985.

2 2008/4/30

