
Tribal Ownership

Nicholas Cameron
Victoria University of Wellington

ncameron@ecs.vuw.ac.nz

James Noble
Victoria University of Wellington

kjx@ecs.vuw.ac.nz

Tobias Wrigstad
Uppsala University

tobias.wrigstad@it.uu.se

Abstract
Tribal Ownership unifies class nesting and object ownership.
Tribal Ownership is based on Tribe, a language with nested
classes and object families. In Tribal Ownership, a pro-
gram’s runtime object ownership structure is characterised
by the lexical nesting structure of its classes.

We build on a variant of Tribe to present a descriptive
ownership system, using object nesting to describe heap par-
titions, but without imposing any restrictions on program-
ming disciplines. We then demonstrate how a range of differ-
ent prescriptive ownership policies can be supported on top
of the descriptive Tribal Ownership mechanism; including a
novel owners-as-local-dominators policy. We formalise our
type system and prove soundness and several ownership in-
variants. The resulting system requires strikingly few anno-
tations, and uses well-understood encapsulation techniques
to create ownership systems that should be intuitive for pro-
grammers.

Categories and Subject Descriptors D.3.3 [Software]:
Programming Languages—Language Constructs and
Features

General Terms Languages, Theory

Keywords Ownership types, virtual classes, nested classes,
family polymorphism

1. Introduction
Ownership Types Ownership type systems statically im-
pose hierarchical structures onto the heap. By structuring the
heap, compilers and programmers can reason about small
parts of it in isolation, which makes many otherwise in-
tractable analyses possible. Ownership languages often sup-
port encapsulation policies based on the heap structure (pre-
scriptive systems); these might restrict references, modifica-
tion, or access. Alternatively, ownership information can be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

used to describe the effects of computation without impos-
ing any restrictions (descriptive ownership) [16]. Ownership
types have been used to support memory management and
garbage collection [10, 51], alias analysis [2], verification
[25], concurrency [7, 24, 50], parallelisation [21, 18], real-
time programming [46, 51], and more [2, 23, 9].

Ownership types tend to require substantial annotations
to describe how individual fields and methods relate to the
ownership hierarchy. These annotations can be confusing,
and have negative side-effects on refactoring and program
maintenance. Furthermore, because the annotations primar-
ily decorate individual methods and fields, it can be difficult
to see how each class or object fits into the ownership struc-
ture as a whole.

In this paper we present an ownership system based on
virtual classes that does not require any additional annota-
tion, and, by making the ownership structure explicit in a
program’s class structure, should be easier for programmers
to use and understand.

Virtual Classes Virtual classes allow families of classes to
be inherited, rather than just single classes. In a language
with virtual classes, classes are lexically nested inside other
classes. When a class is inherited, its nested inner classes
(and the relationships between them) are inherited along
with its methods and fields. Virtual classes allow programs
to express types such as “all nodes of any graph”, “all nodes
belonging to the graph g”, and “this particular node in this
particular graph”, and to distinguish between them statically.

Virtual classes are a powerful and intuitive mechanism
which are beginning to appear in practical programming
languages [36, 12]. We expect virtual classes to become
more mainstream; our proposal uses virtual classes to bring
the considerable benefits of ownership types to a language at
low additional cost.

Our Contribution In this paper we describe Tribal own-
ership, an ownership types system built on a variant of the
virtual class calculus Tribe [19]. Our language has no ad-
ditional syntax to support ownership, only the usual syn-
tax used to support virtual classes. In Tribal Ownership, the
object ownership and nested class hierarchies coincide. By
unifying these hierarchies we make the ownership hierarchy

more apparent in source code and the system easier for pro-
grammers to understand.

In our proposed system, all instances of a class are owned
by the object which encloses that class. Since this object is
already tracked by the type system, no additional annotations
are required to enforce ownership. Flexibility is provided by
allowing classes to be imported into a different class, and so
take instances of the importing class as owners.

We show how different encapsulation policies can be
enforced on top of the descriptive Tribal Ownership sys-
tem. Additionally, we present a new variation on the stan-
dard owners-as-dominators policy that enforces owners-as-
dominators locally within isolated sub-heaps, whilst giving
full access to other areas of the heap.

In summary, the contributions of this paper are:

– A new variant of the Tribe language with simpler types,
cross-family inheritance, and generics. We believe this
variant is easier to program with and understand than the
original version of Tribe. We also contribute a new for-
malism (in which, formalising cross-family inheritance
was the main challenge) and type soundness proof.

– The first formalisation of ownership types using virtual
classes (Tribeown), and a proof that the ownership hierar-
chy is preserved by our type system.

– Formal and informal descriptions of several different en-
capsulation policies built on top of Tribal ownership.

– The novel encapsulation policy owners-as-local-domin-
ators, a flexible policy which subsumes owners-as-domin-
ators. We prove that this property is enforced by our for-
malism.

Organisation We give background on the Tribe language
in Sect. 2. We describe our new variant, Tribeown, its formal-
isation, and soundness proof in Sect. 3. We describe how this
system supports descriptive ownership, and extend our for-
malism in order to prove sound ownership typing in Sect. 4.
We describe how encapsulation policies can be encoded in
Tribeown and describe and formalise our new encapsulation
property owners-as-local-dominators in Sect. 5. We cover re-
lated work in Sect. 6, and further work and our conclusions
in Sect. 7.

2. Tribe
Tribe (along with many other languages following on from
BETA [37]) supports nested virtual classes. As with Java’s
(non-static) inner classes, Tribe’s nested class declarations
lead to nested objects at runtime. Consider the following
simple example, inspired by [40]:

class University {

 class Student {}

 class Course {

 class RawMark {}

 this.Map<this.out.Student,

 this.RawMark> marks_map = ...;

 }

}

Figure 1. Nesting structure of nested classes

class University {

class Student {...}

class Course {

class RawMark {...}

this.Map<this.out.Student,
this.RawMark> marks_map = ...;

}

}

This code defines a University class with two nested
classes inside it: one class for modelling Students, and
another for modelling Courses. Each Course object has a
RawMark class, representing the private, unmoderated marks
for each course, and a Map which relates students to their raw
marks. Figure 1 shows how the lexical structure of the class
definitions imposes a nesting relationship on the classes.

The marks map field maps students (this.out.Student,
i.e., student objects from the enclosing university object) to
raw marks (this.RawMark). The respective types reflect that
Student is defined one level out in the nesting hierarchy, and
RawMark is defined inside the current class (Course).

2.1 Nested Objects
Fig. 2 shows an example of how these nested classes could
be instantiated at runtime. The outermost University class
is instantiated twice, with one instance representing “VUW”
and the other representing “Uppsala”. Nested inside each
university object are a number of different objects, instances
of the Student and Course classes. Just as the Student and
Course class declarations are nested inside the declaration
of the University class in the program source code, so the
various Student and Course instances are nested inside the
University object to which belong. Going further down
inside the VUW course SWEN221, inside that course object are
Map and three RawMark objects. Being nested inside another
object has no effect on references between objects: the Map

refers to those three RawMarks and also to three students who

VUW Uppsala

Amy Nick
Alli

Mats

Lars

SWEN423 SWEN221

1DL240

Map
Map

Raw

Mark

Raw

Mark

Raw

Mark

Raw

Mark
Raw

Mark

Figure 2. Objects instantiating nested classes

are presumably taking those courses (and have the associated
raw marks) but who are outside the Course object.

In Tribe, inner class instances maintain a runtime refer-
ence to their enclosing object: this is written “out”. So out

for Mats, Lars, and 1DL240 is the Uppsala object; while out

for Amy, Nick, Alli, SWEN423, and SWEN211 is the VUW ob-
ject. This is illustrated in Fig. 3. Note the ? on the dotted
line from Map to Uppsala, which we will return to when dis-
cussing cross-family imports later.

The out above is the same out used in defining types:
conceptually, the types of the inner classes are also nested
within their enclosing object. Every object anchors a class
family: objects in the class are only compatible (related by
subtyping) with objects in the same family. So the courses
and students in each university are different types from dif-
ferent families: a VUW student cannot enroll at an Uppsala
course, and vice versa [29, 19].

2.2 Family Polymorphism
Tribe supports a powerful notion of inheritance which al-
lows groups of classes to be extended together, preserving
the relationships between classes. Nested classes can be in-
herited or overridden along with a superclass’s fields and
methods. This is known as family polymorphism [29], and
supports sophisticated implementations for design patterns
and the expression problem [48, 47]. The following example
shows how a Conservatorium — a stand-alone music school
— can be implemented by inheriting from a University:

class Conservatorium extends University {

class Student {this.out.Instrument major; ...}

}

class Instrument {...}

Because they include nested inner classes, University and
Conservatorium define two class families, which are related
by inheritance. So, Conservatorium will not only inherit

VUW Uppsala

Amy Nick
Alli

Mats

Lars

SWEN423
SWEN221

1DL240

Map
Map

Raw
Mark

Raw
Mark

Raw
Mark

Raw
Mark

Raw
Mark

this.out

this.out.out
?

this.out

Figure 3. Paths from nested to enclosing objects.

methods and fields from University, but also University’s
Course and Student classes. Because every conservatorium
student must major in a musical instrument, Conservatorium.
Student further binds University.Student: adding in a
major field of type Instrument. This is called further bind-
ing because by class family inheritance, a Conservatorium.

Student (i.e. the Student class declared within Conserv-

atorium) will also gain all the fields and methods from the
University. Student student — and any inner classes too!

Subtyping in Tribe follows from subclassing, but not fur-
ther binding. For example, Conservatorium is a subtype of
University; but Conservatorium. Student is not a subtype
of University.Student

2.3 Tribe Types
Tribe uses path dependent types to distinguish classes which
belong to different families. For example, assuming the
variables University u and Conservatorium c, the type
c.Course is not a subtype of u.Course, because u and c

might refer to different objects. Object family types consist
of a path to an object and the name of a class defined by
that object. Paths start at a variable (often this) and have
steps using final fields or the out keyword (which denotes a
class’s enclosing object). For example, in an object with type
u.Course, the path this.out, will refer to a University ob-
ject, in an object of type c.Course, the same path will refer
to a Conservatorium object.

Tribe types form a spectrum: from singleton types which
consist of a path only and denote a specific object; object
family types which represent instantiations of a class nested
in a specific object; to absolute types which specify only the
class. In our running example, u is a singleton type denot-
ing the specific university object referred by the variable;
u.Course is an object family type denoting any course in u,
and the absolute type University.Course is any course in
any university.

Subtyping only occurs within an object family: u.Course
is a subtype of u.Course (by reflexivity), but u1.Course is
not a subtype of u2.Course; all three types are subtypes
of their corresponding absolute type, University.Course

(assuming u, u1, u2 are instances of University).
Tribe is not only expressive, but intuitive: nested classes

are easy to understand, families of classes are a natural unit
of code, and paths are familiar from Java programming.

3. Tribeown

Our goal has been to support ownership types in a virtual
classes language. We chose Tribe as our base language be-
cause of its flexible types, elegant and fairly standard for-
malism, and because the type system is amenable to cap-
turing ownership information. Supporting object ownership
in Tribe is not trivial, however: we had to improve support
for cross-family inheritance (described below in Sect. 3.2),
change some aspects of the formalisation (Sect. 3.3) and
add ways to reason about and enforce ownership properties
(Sect. 4 and Sect. 5). We call our variant language Tribeown.

In Tribeown, we take the hierarchy of nested classes as
the ownership hierarchy. An object’s owner is its enclosing
object. For any type T, T.out (the type of the enclosing
object) is the owner of objects with type T.

3.1 Path Types and generics
Tribeown has a more restrictive syntax of types than Tribe:
we disallow the use of final field names in types and restrict
the ordering of the components of types, in effect, imposing
a normal form for types. This is necessary to conceptualise
and prove some ownership properties (discussed in Sect. 4).
It also simplifies our formalisation.

Tribe types have syntax x.(ff | out | C)*, where x

includes this and the outermost ‘world’ object, world, ff
is the name of a final field, and C is a class name. Tribeown

types have the form x.out*.C*; that is, a path which starts
at a variable, then goes outward some number of steps, and
then inward by some number of class names. We support
absolute types (where the path starts at world and has no
outward steps), singleton types (where there are no class
names), and all types with an intermediate level of precision
(e.g., this.out.C.D). We do not support types with fields1 or
types which have an outward step from a class name. Types
of the latter case can be represented in Tribeown by using the
equivalent type, which has neither class name nor outward
step, e.g., x.D for x.C.out.D.

To make up some of the expressivity lost by removing
fields from types, we introduce simple type genericity. For
now, we only support unbounded generics on classes and

1 We found field types uncommon in our experience, and often restrictive
because the Tribe type system cannot associate fields used in types with the
values instantiating the fields; e.g., even if x.f = y, there is no relation-
ship between y.C and x.f.C.

types. Generic methods should be easy to support and are
elided. Bounded and variant generics are left for future work.

3.2 Importing Module Classes
Tribeown supports cross-family inheritance through module
classes. Module classes restrict external dependencies by
forbidding the use of out in their definitions. Since module
classes do not have any external dependencies, they (and
their nested classes) can be imported arbitrarily. As the code
example below shows, Map is a module class, and therefore
cannot name any external object. Hence, the dotted-line from
Map to Uppsala in Fig. 3, cannot exist.

Module classes may only extend other module classes.
We elaborate the example from Sect. 2:

module Collections {

class List<X> {...}

class Map<K, V> {...}

}

class University {

...

class Course imports Collections{

...

this.Map<this.out.Student,
this.RawMark> marks_map = ...;

}

}

Importing a module gives subtyping: in the example above,
Course is a subtype of Collections and Course. List<Uni-

versity> is a subtype of Collections.List<University>.
Module classes are reminiscent of mixin modules, which
lack a super class, except that the dependency is on nesting
rather than on subclassing.

In our formalism (described below), out is modelled as a
distinguished field. A module class is simply a class which
does not define an out field. Thus, we check whether an out

field is defined or not to check if a class is a module, and can
thus be imported.

Cross-family inheritance via module classes allows
Tribeown to have a single top type. Tribe lacks a top type
— each class has a nested Object class which is unrelated
to other Object classes. We assume a module class Root

nested directly inside world which contains an Object class.
All classes (including world) implicitly import Root, and
all classes without explicit superclasses are implicit sub-
classes of the adopted Object (a ‘local’ top type). Every
local Object is a subtype of Root.Object, which is thus a
top type for Tribeown. We can, therefore, describe any ob-
ject nested within an object or class using a local Object

(e.g., x.Object is the superclass of all classes nested in x)
and describe all objects using Root.Object. A top type is
useful for describing variables to be used as owners and,
hypothetically, for bounds on type variables.

Tribe did not support cross-family polymorphism, al-
though an adoption mechanism was proposed (but not

proved sound) which addressed some of the same motiva-
tions. Module classes are a more developed solution: we
formalise their interaction with subclassing and subtyping,
and include them in our soundness proof.

3.3 Formalisation
Our formalisation of Tribeown borrows heavily from the
Tribe formalism. Differences reflect differences in the lan-
guage design, some simplifications, a focus on ownership
rather then general language design, and differences in style.
Our formalism is in the Featherweight Java [32] mould.

Languages with multiple inheritance (including Tribeown

and Tribe) must deal with the possibility of ambiguous
lookup, where fields and methods with the same name are
inherited from several different superclasses. Tribe sidesteps
this problem by non-deterministically selecting one. This is
not an issue for soundness because all methods inherited by
a class with the same name, must have the same type. We
go a step further and do not even guarantee that a method
from the most specific class will be executed, only that some
inherited method will be executed. Although this decision
would be impractical in a real language, it does not affect our
soundness result because our (non-deterministic) calculus is
more general than a corresponding language with determin-
istic dispatch. In a practical implementation, we can select
from a variety of solutions, e.g., forcing the programmer to
manually resolve ambiguities.

Syntax The syntax of Tribeown is defined in Fig. 4. Ele-
ments in grey may appear during evaluation, but may not
be written by a programmer. The syntax of expressions will
be described when we cover their type rules. The key feature
of class declarations is that they may include nested classes.
We use ¢ for “extends” and 5 for “imports”. The former
indicates subclassing, the latter importing a module. We dis-
cuss public and private classes in Sect. 5. We treat this as a
distinguished variable and out as a distinguished field.

Environments (Γ) can contain mappings from variables
to their types, type variables (showing which type variables
are in scope), and a heap (HΓ, used as an environment for
type checking runtime expressions).

Our rules make use of substitution. Because of the flex-
ibility of types in Tribe, any type can be substituted for a
variable in a type and give a syntactically valid type. This
is not the case in Tribeown; for example, [y.C/x]stdx.out.D

gives y.C.out.D which is not a Tribeown type (it is valid
in Tribe). To address this, we define substitution in a non-
standard way in Fig. 5. In this figure we use [...]std to
mean standard substitution. Tribeown substitution is thus de-
fined to normalise ill-formed types into Tribeown types by
matching and eliminating outs with class names. For exam-
ple, [y.C/x]x.out.D is defined to give y.D in Tribeown, and
[y.out.C/x]x.out.D to give y.out.D.

Inheritance Tribeown has two forms of inheritance: sub-
classing and further binding. These relations (between ab-

e ::= null | p | γ.f | γ.f = e expressions
| let x:T= e in e | γ.m(γ)

| new γ.N | err

v ::= null | world | ι values

P ::= Q e programs
Q ::= α class C<X> ¢ N5 A {Q T f; M}

class declarations
α ::= public | private naming modifiers
M ::= T m(T x) {return e;} method declarations

s ::= γ | world path starts
p ::= s | p.out paths
N ::= C<T> instantiated class names
P ::= p | P.N path types
T , U ::= P | X types
A ::= world | A.N absolute types
r ::= world | ι runtime paths
R ::= r.C<R> runtime types

Γ ::= ∅ | Γ, γ:T | Γ,X | HΓ environments
γ ::= x | ι variables or addresses
H ::= ∅ | H,ι → {R; f→v} heaps

x, this variables
X type variables
C, D, Object class names
f,out fields

Figure 4. Syntax of Tribeown.

[T/γ]stdT ′ = p.C.out.C′

|C| = |out|
[T/γ]T ′ = p.C′

Figure 5. Type subsitution in Tribeown.

solute types) are defined in Fig. 6. The auxiliary function
P(defined in Fig. 9) looks up the definition of a class in the
program, taking into account type substitution. Sub-classing
reflects the relationship between classes denoted by the
programmer using the extends keyword (SC-SUBCLASS).
When a class is inherited, the subclass relationships be-
tween its child classes are also inherited (SC-NEST). (SC-
IMPORT) accounts for subclassing due to imported modules.
Further binding is the implicit inheritance of child classes
when a surrounding class is inherited (FB-NEST). For con-
creteness, B.C further binds A.C and subclasses B.D in the
following:

class A {

class C {}

}

class B extends A {

class D {}

class C extends D {}

}

Subclassing ` A @s A

α class C<X> ¢ N ... ∈ P(A)
` A.C<T> @s A.[T/X]N i

(SC-SUBCLASS)

P(A) defined
` A @i A′ ` A′.N @s A′.N ′

` A.N @s A.N ′

(SC-NEST)

α class C<X>...5 A ... ∈ P(A)
` A.C<T> @s [T/X]Ai

(SC-IMPORT)
Further Binding ` A @f A

` A @i A′

α class C<X> ... ∈ P(A′)
` A.C<T> @f A′.C<T>

(FB-NEST)
Inheritance ` A @i A

` A @s A′

` A @i A′

(I-SC)

` A @f A′

` A @i A′

(I-FB)

Figure 6. Tribeown inheritance and subclassing.

Well-formed and absolute types An absolute type (A) de-
scribes an object by a path from the world program root,
down through the class tree, for example, world.C.D. The
judgement Γ ` P ⇑ A holds if A is an absolute type for all
objects of type P . A non-variable type in Tribeown is well-
formed if a corresponding absolute type can be derived. Ab-
solute types and well-formed types are defined in Fig. 82.
The rules that define absolute types are a combination of
standard well-formedness rules for languages such as FGJ
[32], and an inductive navigation of the nested class hierar-
chy3.

Well-formed heaps are defined in the same figure. A heap
is well-formed if each object in it has a well-formed runtime
type, a sensible out field, and all other fields are well-typed.

Subtyping Subtyping rules are given in Fig. 7. Subtyping
follows from subclassing and importing ((S-SUBCLASS)
and (S-IMPORT)), and the expected semantics of out (S-
OUT-2).

2 The fType auxiliary function looks up the type of a field and is defined in
Fig. 9.
3 Compared to Tribe, we require an inheritance premise in (A-CLASS) (as
well as (SC-NEST)) because we do not have a cls judgement which takes
inheritance into account.

Subtyping Γ ` T <: T

Γ ` T <: T

(S-REFLEX)

Γ ` T1 <: T3

Γ ` T3 <: T2

Γ ` T1 <: T2

(S-TRANS)

Γ ` P ⇑ A
` A.N @s A.N ′

Γ ` P.N <: P.N ′

(S-SUBCLASS)

Γ ` P <: P ′

Γ ` P ′.N OK

Γ ` P.N <: P ′.N

(S-NEST-CLASS)

Γ(γ) = P

Γ ` γ <: P

(S-VAR)

Γ ` p ⇑ A.N

fType(out, A.N) defined
Γ ` p <: p.out.N

(S-OUT-2)

Γ ` P <: P ′

Γ ` P ⇑ A Γ ` P ′ ⇑ A′

fType(out, A′) defined
Γ ` [P/x]x.out <: [P ′/x]x.out

(S-OUT-NEST)

Γ ` P ⇑ A′ ` A′ v∗i A.C<T>

α class C<X>...5 A ... ∈ P(A)
Γ ` P <: [T/X]Ai

(S-IMPORT)

Figure 7. Tribeown subtyping.

Variables may be used as types; subtyping reflects that a
variable’s type is a less accurate way to describe the variable
than the variable itself (S-VAR).

Types denote sets of objects, and a subtype is a smaller
set of objects; (S-NEST-CLASS) and (S-OUT-NEST) re-
flect that we can go up or down the nested class hierar-
chy and preserve this ‘smaller set of objects’ concept. (S-
OUT-NEST) must use substitution rather than plain nest-
ing (that is, [P/x]x.out rather than P.out) to account for
types which are semantically ‘out’ but do not use the out

keyword. Furthermore, we take advantage of the definition
of Tribeown substitution. For example, we can derive that
x.out is a subtype of world.C, if we can derive that x is a
subtype of world.C.D. By using (S-OUT-NEST) in this way,
(S-VAR), and (S-NEST-CLASS) we can derive that any type
is a subtype of its absolute type, and so the rule (S-ABS) of
Tribe is admissible in Tribeown.

Type checking Auxiliary functions are defined in Fig. 9.
We define field type, and method type and body lookup
functions and the lookup function method, which checks if a
method is defined. These are all defined declaratively using
the inheritance relation, as opposed to the usual inductive

Absolute types Γ ` P ⇑ A

Γ(γ) = P Γ ` P ⇑ A

Γ ` γ ⇑ A

(A-VAR)

Γ ` world ⇑ world

(A-WORLD)

Γ ` p ⇑ A.N

fType(out, A.N) defined
Γ ` p.out ⇑ A

(A-OUT)

Γ ` P ⇑ A ` A v∗i A′

α class C<X> ... ∈ P(A′)
|T | = |X| Γ ` T OK

Γ ` P.C<T> ⇑ A.C<T>

(A-CLASS)
Well-formed types Γ ` T OK

Γ ` P ⇑ A

Γ ` P OK

(F-PATH-TYPE)

X ∈ Γ
Γ ` X OK

(F-TYPE-VAR)

Well-formed heaps ` H OK

∀ι → {ι′.C<R>; f→v} ∈ H
fi = out⇒ vi = ι′ H ` ι′.C<R> ⇑ A
fType(f, A) = T H ` v : [ι/this]T

` H OK

(F-HEAP)

Figure 8. Tribeown well-formed types and heaps.

formulation [32] or using class tables [19, 42]. Finally, AH
finds the absolute type of an address in the heap.

Rules for type checking Tribeown are given in Fig. 10.
(T-SUBS), (T-LET), and (T-NULL) are standard. A variable
(or world) type checks (T-VAR) if it is a valid type. A vari-
able’s minimal type is that variable itself; the type recorded
in the environment can be used by subsumption. (T-FIELD),
(T-ASSIGN), and (T-INVK) lookup the absolute type of the
receiver and use that absolute type to look up the type of
the field or method; otherwise, they are mostly standard.
Of note in these rules is the substitution of the receiver for
this (and similarly for the arguments in (T-INVK)), this
(and arguments) may appear in Tribeown types and must
be substituted away accordingly. (T-NEW) requires a re-
ceiver which is unusual for object-oriented languages with-
out nested classes: it allows the precise class to be instan-
tiated to be determined statically. We require receivers and
actual parameters to method calls to be variables, this sim-
plifies substitution. We do not lose expressivity because we
can use let expressions to create local variables as needed. If
we create a local variable with a path, then we can use that

P = Q e

P(world) = Q

α class C<X> ... {Q ...} ∈ P(A)
P(A.C<T>) = [T/X]Q

` A v∗i A′.C<T>

α class C<X> ... {Q U f; M} ∈ P(A′)
fType(fk, A) = [T/X]Uk

` A v∗i A′.C<T>

α class C<X> ... {Q U ′ f; M} ∈ P(A′)
U m(U x) {return e;} ∈ M

mType(m, A) = [T/X]Πx:U .U
mBody(m, A) = (x; [T/X]e)

method(Mk, A)

public(world)

` A v∗i A′

public class C<X> ... ∈ P(A′)
public(A.C<T>)

AH(world) = world

H(ι) = {r.N ; ...}
AH(ι) = AH(r).N

Figure 9. Auxiliary functions for Tribeown.

path as a type so the type system can be aware of the relation
between variable and path.

Rules for type checking programs, classes, and methods
are given in Fig. 11. The absolute type of this is kept up
to date in the environment by (T-CLASS) and (T-PROG).
Elements of a class (methods, field types, classes, super-
classes, etc.) are checked to be well-formed. We also check
that imported modules are in fact modules, that is, they do
not have an out field. We check that overriding methods have
matching types with all methods they override. Method type
checking is standard, other than that return and argument
types may include the names of formal arguments and this.

Operational semantics We give a large step operational
semantics for Tribeown in Fig. 12; rules for handling error
conditions are standard and are relegated to the accompany-
ing technical report [15]. Despite the complexities of virtual
class languages and ownership, all semantics rules are stan-
dard for object-oriented formalisms. In (R-NEW), we ini-
tialise fields to null and set the out field to the new object’s
surrounding object.

3.4 Properties
We prove preservation (subject reduction) for Tribeown, this
states that reduction preserves the type of expressions:

Expression typing Γ ` e : T

Γ ` e : T ′

Γ ` T ′ <: T
Γ ` T OK

Γ ` e : T

(T-SUBS)

Γ ` e : T ′

Γ, x:T ′ ` e′ : T
Γ ` T OK

Γ ` let x:T ′ = e in e
′ : T

(T-LET)

Γ ` γ ⇑ A
fType(f, A) = T

Γ ` γ.f : [γ/this]T

(T-FIELD)

Γ ` γ ⇑ A
fType(f, A) = T f 6= out

Γ ` e : [γ/this]T
Γ ` γ.f = e : [γ/this]T

(T-ASSIGN)

Γ ` T OK

Γ ` null : T

(T-NULL)

Γ ` s OK

Γ ` s : s

(T-VAR)

Γ ` γ.N ⇑ A.N

Γ ` new γ.N : γ.N

(T-NEW)

Γ ` γ ⇑ A Γ ` γ : [γ/this,γ/x]T
mType(m, A) = Πx:T.T

Γ ` γ.m(γ) : [γ/this,γ/x]T

(T-INVK)

Figure 10. Tribeown expression typing rules.

Theorem: preservation ` H OK,H ` e : T, e;H ;

e′;H′, e′ 6= err ⇒` H′ OK, e′ = v,H′ ` v : T .
Proof is by structural induction on the derivation of
e;H ; e′;H′.

The proof of this theorem and supporting lemmas are given
in the accompanying technical report [15]; the proof struc-
ture mostly follows [19].

4. Tribal Topologies
In this section we will show how Tribeown can be used as
a descriptive [14, 16] ownership system ‘for free’ — that
is, without any additional program annotations or formal
rules. In the next section we will show how a range of
different prescriptive ownership policies can be supported
by the same underlying descriptive Tribeown type system
— separating ownership policies from the mechanisms that
implement them [1].

The key insight is that the nesting of classes in objects,
used in Tribeown to support family polymorphism, is pre-
cisely the information needed to support descriptive owner-
ship. Lexically, classes are nested in other classes; seman-
tically, classes, and their instantiations, are nested under an

Program typing ` P OK

this:world ` Q OK this:world ` e : T
v+

i is acyclic

` Q e OK

(T-PROG)

Class typing Γ ` Q OK

Γ(this) = A′ Γ′ = Γ[this 7→ A′.C<X>], X
Γ′ ` A′.N , A, Q, T , M OK

∀A ∈ A. fType(out, A) undefined
fi = out⇒ Ti = this.out

∀M, M ′ ∈ {M |method(M, A′.C<X>)}. override(M, M ′)
α = private⇒ ∀A st ` A′.C<X> v∗i A. ¬public(A)

Γ ` α class C<X> ¢ N 5 A {Q T f; M} OK

(T-CLASS)

Method typing Γ ` M OK

Γ, x:T ` e : T Γ, x:T ` T , T OK

Γ ` T m(T x) {return e;} OK

(T-METHOD)

M = T m(T x) {return e;}
M ′ = T m(T x) {return e′;}

override(M, M ′)

(T-OVERRIDE)

M = T m(T x) {return e;}
M ′ = T ′ m′ (T ′ x′) {return e′;}

m 6= m′

override(M, M ′)

(T-OVERRIDE-NE)

Figure 11. Tribeown typing rules for classes and methods.

object: the owner of those instantiations. This nesting of ob-
jects is our ownership hierarchy.

The owner of an object (or an approximation to the
owner) can be derived from its type. For object family types,
the owner is the path part, for example, the owner of x.C is
x, the owner of this.out.C is this.out, and the owner of
world.C is world. Variables with singleton (path) types can
only hold the object indicated by the singleton type, there-
fore the owner of objects with singleton type is the owner
of the path; e.g., the owner of objects with type x.out is
x.out.out.

If the type is a variable, then we can find a more precise
owner by examining the type of the variable. For example,
if x has type y.C, then an object with type x will have
owner y or x.out, and these two paths will always denote the
same object. We know they denote the same object because
they are subtypes (y is a subtype of x.out by rules (S-

Computation e;H ; v;H

v;H ; v;H
(R-VAL)

H(ι) = {T ; f→v}
ι.fk;H ; vk;H

(R-FIELD)

e;H ; v;H′ [v/x]e′;H′ ; v′;H′′
let x:T= e in e′;H ; v′;H′′

(R-LET)

f = {f|fType(f,AHn(r).N) defined}
H′ = Hn, ι → {r.N ; out→ r, f→null}

new r.N ;H ; ι;H′
(R-NEW)

e;H ; v;H1

H1(ι) = {R; f→v}
H′ = H1[ι 7→ {R; f→v[fk 7→ v]}]

ι.fk = e;H ; v;H′
(R-ASSIGN)

e;H ; r;Hn

mBody(m,AHn(ι)) = (x; e)
[ι/this,r/x]e;Hn ; v;H′

ι.m(e);H ; v;H′
(R-INVOKE)

Figure 12. Tribeown reduction rules.

VAR) and (S-OUT-NEST)) and path types that are subtypes
always denote the same object (which is obvious since their
interpretation are singleton sets, and the interpretation of
subtyping is subset).

For other types, we cannot say what the precise owner
is. This is clear if we consider, for example, objects with
type x.Course.RawMark that denote any RawMark object in
any Course object in x. We say that the owner type of
x.Course.RawMark is x.Course.

In general, an owner type in Tribeown can be any non-
variable type; if the owner type is not a path, then it does
not denote a specific owner. Non-path owner types represent
partial information about the actual owner, and are similar
to existential [14, 49] or variant owners [35]. Subtyping
between owner types can be used to identify types that refer
to the same owner or set of owners, or refer to a more precise
owner type. For example, if x is a subtype of y.C then the
owner type x is a single owner and y.C describes a group of
owners which includes x.

An owner type is not defined for all types. Because mod-
ule classes can be imported into any other class, objects with
module type may have any owner. Therefore, types which
indicate a module class do not have defined owner types;
for example, world.Collections cannot be assumed to have
owner world, because it may be imported into some other

Owner relation Γ ` P ⇓ P

Γ ` P ⇑ A
fType(out, A) defined
Γ ` P ⇓ [P/x]x.out

(O-OWNER)
Inside relation Γ ` P ≺: P

Γ ` P <: P ′ Γ ` P ′ ⇑ A
fType(out, A) defined

Γ ` P ≺: P ′

(I-SUB)

Γ ` P ≺: P ′′

Γ ` P ′′ ≺: P ′

Γ ` P ≺: P ′

(I-TRANS)

Γ ` p ≺: p.out

(I-OUT)

Γ ` P.N ≺: P

(I-CLASS)

H(ι) = {r.N ; ...}
H ` ι ≺: r

(I-RUNTIME)

Figure 13. Tribeown owner function and inside relation.

class with a different owner; if world.Collections is im-
ported into some non-module class C with owner x then
x.Collections will have owner x, as usual. Note also that
world does not have an owner, because it is the top level of
nesting.

We use the judgement Γ ` T ⇓ P to find the owner
(P) from a type (T). The owner judgement is defined in
Fig. 13. Within a class, out can be used to name the current
object’s owner in types and expressions. We find the owner
by leveraging Tribeown substitution: we attempt to append
out and Tribeown substitution gives us the result described
informally above. We must, of course, check that out is
defined in the given type.

At runtime, we can find an object’s owner by observing its
object record in the heap. The object record stores an object’s
runtime type which is an object family type, the owner can
be found in the usual way. The owner can also be found
by looking at the value in the object’s out field, these two
approaches will give the same result in a well-formed heap.

By observing that each object in the heap is defined as
having a single owner, and that the resulting owner relation
between objects in the heap is acyclic (because the owner
must be present in the heap at the time an object with that
owner is created), we deduce that owners in the heap form
a tree. Therefore, our ownership system describes an hierar-
chical topology for the heap. We prove below that the topol-
ogy described statically by the type system is sound with
respect to the runtime heap topology.

4.1 The Inside Relation
We define the inside relation [40] for owner types in Tribeown

in Fig. 13. The inside relation is reflexive (given by (I-SUB)
and (S-REFLEX)) and transitive. Since subtyping indicates
more precise descriptions of the same owner-type, subtyping
between two owner types gives an inside relation4. Rules (I-
OUT) and (I-CLASS) describe stepping outward or inward
one step in the nested class hierarchy, which corresponds
to one step outward or inward in the ownership hierarchy.
(I-RUNTIME) is used to compute the inside relation for dy-
namic owner types and is based directly on the structure of
the heap.

4.2 Imported Module Classes
Having owners defined by the lexical nesting of classes
could limit reuse, for example, a programmer would need to
write a new list class nested inside every class which needs
to own a list. Reuse of classes by importing modules is thus
crucial for creating a practical ownership system. Importing
a module not only allows the code to be reused, but also
allows the importing class to own the imported classes. To
the best of our knowledge, this feature is not found in other
virtual classes languages. For example,

module Collections {

class Map<K, V> {...}

}

class University {

...

class Course imports Collections{

...

this.Map<this.out.Student,
this.RawMark> marks_map = ...;

}

}

Here, the field marks map is an instance of Map owned by the
current instance of Course.

4.3 Discussion
In most ownership systems, an object may be owned by any
other object in the program and the owner is independent of
the object’s class. Classes are declared in a flat topology and
there is no direct indication of the ownership hierarchy in
the source code. In Tribeown, an object’s place in the own-
ership hierarchy is determined in part by the hierarchy of
nested classes. Although the owner of each object may be
different, the class of the owner is determined by the owned
object’s class. That is, while objects of the same class may be
owned by different owners, the objects will be on the same
tier of the ownership hierarchy and their owners will have
a single class. Furthermore, objects of different classes are

4 In fact, it indicates a ‘reflexive’ relationship with respect to the inside
relation, if we offered a ‘single step’ (irreflexive, intransitive) version of
the inside relation, then the rule (I-SUB) could not be used.

guaranteed to have different owners. Analogously to vari-
ance annotations [13], more of the ownership information in
Tribeown is defined where a class is declared, compared to
other ownership systems where all ownership information is
defined where classes are used.

In Tribeown the nesting of classes specifies the topology
of objects in the same way as individual classes specify the
structure and behaviour of individual objects in class-based
object-oriented languages.

4.4 Tribal Effects
To show that our descriptive ownership system is useful, we
have used it to define an effect system [45] for Tribeown.
The nested-ness of Tribeown is used to define computational
effects without extra ownership or regions notations. This
should make effects systems accessible and attractive to
programmers. We offer the formalised effect system without
proofs in our technical report [15].

Our effects can describe a single object (by using a sin-
gleton type and an ‘exact’ annotation), a single object and its
transitive representation (by using a singleton type), a con-
text (exact, non-singleton type), or a context and all contexts
under it (non-singleton types). Effects can be combined. The
sub-effect relation follows from the subtype and inside rela-
tions. Our effect assignment rules are mostly standard and
we expect the usual rules for disjointness of effects [18] to
apply. Therefore, Tribal effects could be used to support par-
allelisation of Tribeown code [18, 5].

4.5 Properties
We prove that ownership in Tribeown is sound; that is, the
owner given by an expression’s static type corresponds to the
owner, found in the heap, after evaluating that expression.
This result is necessary for supporting an effect system or
other application of descriptive ownership.

Theorem: Reduction preserves owners ` H OK,H `
e : T, e;H ; ι;H′,H ` T ⇓ P ⇒ H′(ι) =
{r.C<...>; ...},H′ ` r <: P

This theorem follows straightforwardly from our preser-
vation theorem (see Sect. 3.4) and the following lemma.

Lemma: Subtyping preserves owners Γ ` P <:
P ′,Γ ` P ′ ⇓ P ′0 ⇒ Γ ` P ⇓ P0, Γ ` P0 <: P ′0.
Proof is by structural induction on the derivation of
the subtyping judgement.

In Tribeown different paths can point to the same object,
thus a single owner can be denoted by different types. We
formalise this fact using subtyping: p and p′ denote the same
object if and only if p is a subtype of p′ or p′ is a subtype of p.
This statement only makes sense if subtyping monotonically
increases precision of types, we prove this as a lemma to
support our ownership soundness argument:

Lemma: Subtypes are more precise Γ ` T <: p ⇒
T = p′ and Γ ` T <: γ.N ⇒ T ∈ {p, p.N ′}.
Proof is by structural induction on the derivation of
the subtyping judgement.

5. Encapsulation
In this section, we show how encapsulation policies can be
enforced in Tribeown by building on top of the descriptive
ownership outlined in the previous section. We construct
three different variants of owners-as-modifiers (in Fig. 14)
and a new, more flexible variant of owners-as-dominators
with two mechanisms for enforcement (in Fig. 15); we show
how standard owners-as-dominators is a simple restriction of
our variant. Encapsulation policies in Tribeown are defined
independently of the mechanism of descriptive ownership,
and are, essentially, pluggable.

Owners-as-Modifiers (syntactic)

Γ ` γ : this.N∗

...

Γ ` γ.f = e : ...
Γ ` γ.m(e) : ...

(T-ASSIGN T-INVK)

Owners-as-Modifiers (expressive)

Γ ` γ ⇓ P Γ ` P ≺: this ∨ P = this.out

...

Γ ` γ.f = e : ...
Γ ` γ.m(e) : ...

(T-ASSIGN T-INVK)

Owners-as-Modifiers (Universes)

Γ ` γ ⇓ P P ∈ {this, this.out}
...

Γ ` γ.f = e : ...
Γ ` γ.m(e) : ...

(T-ASSIGN T-INVK)

Figure 14. Enforcing owners-as-modifiers in Tribeown.

5.1 Owners-as-Modifiers
Owners-as-modifiers is an encapsulation policy first imple-
mented in the Universes type system [39, 27, 23]. It enforces
that any modification of an object must be initiated by its
owner.

Owners-as-modifiers in the Tribal setting is implemented
by adding restrictions (extra premises) to the rules for field
assignment and method invocation. For simplicity, we ignore

Owners-as-Local-Dominators

Γ ` this ⊕ T

...

Γ ` α class C<X> ¢ A 5 C′ {Q T f; M} OK

(T-CLASS)

...
Γ ` P.C<T> ⊕ T

Γ ` P.C<T> ⇑ A.C<T>

(A-CLASS)

Owners-as-Local-Dominators Heap

∀ι → {R; f→v} ∈ H
...

∀f→ v ∈ v. f 6= out ∧ v 6= null⇒ Γ ` ι ≺: v.out∨
(H ` H(v) ⇑ A ∧ public(A))

` H OK

(F-HEAP)

Figure 15. Enforcing owners-as-dominators in Tribeown.

pure methods. They could easily be supported by allowing
all calls to pure methods; the formalisation is standard (e.g.,
[23]).

Over the next few paragraphs we describe three variations
of the owners-as-modifiers discipline. Each variation is im-
plemented in a different way and enforces a slightly different
invariant; all three variations are defined formally in Fig. 14.

Syntactic variant Our “syntactic variant” of owners-as-
modifiers has a simple implementation, formalised by ex-
amining the syntax of the static type of the receiver. We only
allow field assignment and method invocations on objects
nested inside the current this.

The syntactic variant allows an aggregate to manipulate
its (transitive) representation (instances of classes nested,
possibly deeply, inside the aggregate), but not operate on
peer objects (instances of classes directly nested inside the
aggregate’s owner).

Expressive variant The “expressive variant” is, to the best
of our efforts, the most flexible policy that sticks to the
spirit of owners-as-modifiers. It allows access to transitively
owned objects and peer objects. It is formalised using the
owner and inside relations, rather than a syntactic test, and
is therefore more expensive to implement. It handles paths
which alias a transitively owned object. Finally, it subsumes
the simple variant.

Universes variant The “Universes variant” emulates Uni-
verse Types. An object can modify its own representation
and peer objects, but nothing else. The formalisation uses the

Naming Γ ` P ⊕ T

Local o-as-d, semantic style

Γ ` P ′ ⇓ P ′′ Γ ` P ≺: P ′′

Γ ` P ⊕ P ′

(N-O-AS-D)

Γ ` P ⊕ X

(N-TYPE-VAR)

Γ ` T ⇑ A public(A.N) Γ ` P ⊕ T

Γ ` P ⊕ T.N

(N-PUBLIC)

Local o-as-d, syntactic style

Γ ` T ⇑ A public(A.N)
Γ ` P ⊕ T

Γ ` P ⊕ T.N

(N-PUBLIC)

Γ ` P ⊕ X

(N-TYPE-VAR)

Γ ` p.N ⊕ p.N

Γ ` p ⊕ p

(N-REFLEX)

Γ ` p ⊕ p.N

(N-REP)

Γ ` P ⊕ p

Γ ` P ⊕ p.out

Γ ` P ⊕ p.out.N

(N-OUT-1)

Γ ` p.N ⊕ p

(N-OUT-2)

Γ ` P ′ ⊕ T Γ ` P <: P ′

Γ ` P ⊕ T

(N-SUB)

Figure 16. Tribeown naming restrictions.

owner relation, but not the inside relation (and thus, not sub-
typing), it is therefore ‘more syntactic’ than the expressive
variant, but not purely so. Similarly to the syntactic variant,
the Universes variant only handles types which start at this,
not equivalent types.

5.2 Owners-as-Local-Dominators
In a system that supports owners-as-dominators, an object’s
owner is found on all access paths from the root of the
system to the object itself [22]. In this section we propose a
new, more flexible variation of owners-as-dominators which
has two formalisations. We call our policy owners-as-local-
dominators; it subsumes owners-as-dominators.

The rules in figures 15 and 16 define owners-as-local-
dominators encapsulation in Tribeown. By (T-CLASS), a
class may only use types that it is allowed to name. Nam-
ing, denoted ⊕, is defined in two ways: a semantic variant
with few, declarative rules and a syntactic variant with more
rules, but using only the syntax of types, where possible.

We call our policy owners-as-local-dominators because it
enforces owners-as-dominators over local sub-heaps, rather
than the whole heap. This is supported in the language by
declaring classes public or private. Public class names can
be named anywhere in a program, private class names can
only be named within the surrounding class’s declaration
(at any level of nesting). These private naming rules mimic
standard ownership types, where naming is dictated by the
visibility of this. As a consequence, each instance of a
private class forms the root of an encapsulated sub-heap.
Objects in the sub-heap may be referenced only according
to the owners-as-dominators policy.

In both our naming formalisations, the rules for public
classes and type variables are the same. Both sets of rules
handle aliasing paths by subtyping, in the semantic version
via (I-SUB), and explicitly in the syntactic version.

A public class nested inside an encapsulated sub-heap
may be referenced freely within that heap, but not outside.
It is easy to see why this is the case: WLOG, assume p.C is
a type where p is a path to an object with private class and C

is a public class name. By the rules in Fig. 16, to name p.C,
an object must be able to name p. As a result, public classes
provide flexibility without compromising safety for objects
inside an aggregate. Importantly, it is not possible to define a
public class inside an encapsulated sub-heap and use it as a
proxy to export references to objects outside the sub-heap5.

For concreteness, consider the following code:

private class A {

private class B {

private class C {}

public class D {}

}

private class E {

this.out f1; //OK - owner

this.out.B f2; //OK - peer

this.out.B.C f3; //ERROR - private class

this.out.B.D f4; //OK - can name B

world.F f5; //OK - public class

}

}

public class F {

world.A f6; //OK - peer

world.A.B.D //ERROR can’t name B

}

Public classes may inherit from private classes, but not
vice versa. Therefore, instances of private classes cannot
be named by subsumption. It is safe to subsume a public
class to a private class because a public class can be named
everywhere that a private class can.

Because we wish to use Root.Object as a top type, we
must be able to name it everywhere, and so it must be a
public class. Since private classes can not inherit from public
classes, we require a Root.PrivateObject to be the root of

5 This distinguishes deep ownership from shallow ownership.

the inheritance hierarchy for private classes6. Unfortunately,
this means Root.Object is not a top type after all, but only
one for public classes. We believe this is a feature rather
than a flaw, as subsuming private classes to a global top type
effectively breaks encapsulation.

If all classes are private (or we remove the rule (N-
PUBLIC)), our system upholds the owners-as-dominator
property. If all classes are public, then we enforce no en-
capsulation policy and have descriptive ownership. By using
a mix of public and private classes, we allow the program-
mer to define the level of encapsulation required.

For increased flexibility we only enforce our encapsula-
tion policy on the heap. Similar to Clarke and Drossopou-
lou’s Joe1 [18], we do not enforce naming restrictions on the
types of local variables. (See also a discussion of borrowing
and owner-polymorphic methods in [20].)

Owners-as-local dominators and a default public anno-
tation for classes makes it easy to allow arbitrary aliasing in
a system; except for specific sub-heaps which can be eas-
ily created by a single private annotation on a class. This
is similar to the flat ownership hierarchies in Joelle [21] and
Loci [50], where fields are implicitly encapsulated in the cur-
rent owning object, and active and @Thread annotations are
used as “cut-off points” to define the root of an encapsulated
sub-heap. The big difference is that in Tribeown, the own-
ership hierarchy is not flat, even when aliasing is permitted,
which facilitates gradually increasing encapsulation.

5.2.1 Properties
We define oasld(H) if ∀ι, ι′ ∈ H where H ` ι ↪→ ι′. Γ `
ι ≺: ι′.out ∨ (H ` H(ι′) ⇑ A ∧ public(A)), where ↪→
means has a reference to.

Theorem: owners-as-local-dominators ` H OK,H `
e : T, e;H ; e′;H′, oasld(H) ⇒ oasld(H′)
We prove this theorem for both syntactic and semantic

variants of our naming relation. Both are proved as part of
our preservation theorem by proving that the extra invari-
ants in (F-HEAP) are preserved. This requires extending our
substitution lemmas to the inside, owner, and naming rela-
tions, and, in the syntactic case, proving that syntactic nam-
ing gives semantic naming.

5.2.2 Discussion
Superficially, owners-as-local-dominators appears to be or-
thogonal to the family-polymorphic aspects of Tribal own-
ership. The programmer can specify encapsulated sub-heaps
by annotating classes, however, only because of the unique
correspondence between the nested class hierarchy and the
ownership hierarchy. In a context-parametric ownership sys-
tem, it would only make sense to annotate individual context

6 PrivateObject can be inherited from because its surrounding class is
public. Root.PrivateObject cannot be used as a supertype of the local
PrivateObjects because it cannot be named.

parameters. This is not a solution however, because we could
not control the nesting of public and private contexts; there-
fore, this would not create encapsulated sub-heaps.

6. Related Work
Tribeown is closest in spirit to work by Dietl and Müller [26]
expressing ownership type systems on top of dependent
classes (a similar language feature to virtual classes, but
that allows classes to be nested inside more than one enclos-
ing object). Their system is inspired by the original Tribe
work and has similar properties to Tribeown—topological
constraints and encapsulation restrictions are handled sep-
arately. Their system is an encoding and has not been for-
malised or proven correct. Furthermore, it requires more
annotations (notably, special owner annotations) than our
system. Thus, we believe that Tribeown is a further simpli-
fication of Dietl and Müller’s system. Tribeown also comes
with proofs of type and ownership soundness.

The simplest way to support ownership in a Tribe-like
language is to mimic the context parameters of context-
parametric ownership systems with fields. For example, a
non-generic map could be written as:

class Map {

Object keyOwner;

Object valueOwner;

this.Node[] nodes;

Map(Object keyOwner, Object valueOwner) {...}

class Node {

this.out.keyOwner.Object key;

this.out.valueOwner.Object value;

}

}

Map m = new Map(k, v);

k.Object ko = new k.Object();

m.put(ko, new v.Object()); //type error

v.Object vo = m.get(ko); //type error

Although, this code looks sensible, it cannot be type
checked because the type system cannot determine that
m’s keyOwner is the same object as k, and similarly for
valueOwner. This makes the map essentially useless if we
want to preserve ownership information. We address this
problem in Tribeown by using generics. In a fully dependent
class system such as Dietl and Müller’s, Map can be depen-
dent upon keyOwner and valueOwner, as well as the map’s
owner, allowing programmers to write this kind of code.

Tribeown uses similar restrictions to Confined Types [31]
— a simple set of rules to guarantee that instances of pack-
age scoped classes defined in a package are not referenced
outside the package. In confined type, there is no nesting or
notion of topology. In this respect, the encapsulation pro-

vided by confined types is similar to systems that offer flat
ownership hierarchies, like Joelle [21] and Loci [50].

Ownership and Alias Management Systems There are a
plethora of ownership systems to date, notably Clarke’s orig-
inal deep ownership system [22], Universes [39], shallow
ownership [3], and Ownership Domains [1]. Ownership Do-
mains was the first system to advocate separating policy
from topology. Ownership Domains is more flexible than
Tribe, but requires more annotations. Since the Ownership
Domains programmer can customise encapsulation, the type
system will only enforce ad hoc encapsulation, not an en-
capsulation policy. Therefore, compilers and programmers
cannot rely on the invariants of a policy to aid reasoning. In
similar spirit, Boyland et al. [11] define a set of capabilities
on pointers, although without a static type system.

Tribeown’s out field is similar to Pedigree Types’ chains
of parents for transitive owners, although Pedigree Types
are not based on virtual or nested classes [34].

Inner classes in Java are a primitive kind of nested class,
lacking virtual inheritance. Boyapati et al. [8] have proposed
integrating inner classes with a typical context-parametric
ownership types system. In their system, the ownership hier-
archy is defined orthogonally to the nested class hierarchy:
inner classes have owners independent of their surround-
ing classes. Their system supports a modified owner-as-
dominators encapsulation policy where, as well as the usual
rules, inner classes have privileged access to the representa-
tions of their enclosing objects. Our owners-as-dominators
policy is similar to the inner classes part of Boyapati et al.’s
policy. Our policy is more flexible because nested classes
have access to their peer and owned classes, as well as their
owners, and more intuitive because of the coincidence of the
ownership and nested class hierarchies. Our scheme of pub-
lic classes introduces further flexibility so we avoid the need
for having a separate ownership hierarchy.

Virtual Class Systems Since Ernst’s original proposal [29],
built on gBeta [28], a range of different proposals for virtual
class systems have appeared, both with class families (Con-
cord [33], .FJ [44], and Jx [41]) and object families (Caesar/J
[38], vc [30], Scala [36], gBeta [28], and Tribe). For owner-
ship types, object families are needed since encapsulation is
per-object. Building an ownership system on top of Scala is
an interesting direction for future work.

Recently, Bach Nielsen and Ernst have investigated VM
support for virtual classes [4]. We believe that having ef-
ficient VM support for virtual classes could enable space-
efficient downcasting in ownership types, which is a long-
standing problem in the community (see further [6, 49]).

Bracha’s Newspeak [12] is a recent, dynamically typed
language with virtual classes. Like the aforementioned lan-
guages, Newspeak does not have ownership support.

7. Conclusion and Further Work
We have shown how Tribeown, a language with virtual
classes, can support ownership types, and a range of differ-
ent encapsulation policies, in a flexible and straightforward
way. We have shown that using a class’s enclosing object
as the owner of instances of that class gives a sound own-
ership system. This has been suggested before (first, to our
knowledge, by Clarke [17], later by Dietl and Müller [26])
but not developed, formalised, or proven. A language based
on Tribeown will have low syntactic overhead, and should
make it easy for programmers to comprehend the ownership
hierarchy. We have further described a novel, flexible encap-
sulation policy, owners-as-local-dominators; an extension to
the standard owners-as-dominators policy, which leverages
the nested-class-based ownership of Tribeown and allows
the programmer to customise the level of encapsulation en-
forced.

Future work We have shown how both an owners-as-
modifiers policy and an owners-as-dominator policy can be
layered on top of Tribeown, and how the latter can be lo-
calised. We did not find an obvious way to localise owners-
as-modifiers. We hope to find a way to do this, then combine
the local variants of both properties in the same program.

We believe that class invariants can be extended to fam-
ilies of classes to describe invariants which depend on the
relationships between classes as well as the classes them-
selves; for example, to verify subject-observer [43].

Acknowledgments
We would like to thank Dave Clarke and Sophia Drossopoulou,
who were part of the team defining the original Tribe system,
and were also present in several initial discussions about us-
ing Tribe to express ownership types. We would also like
to thank the OOPSLA reviewers for their useful feedback.
The first author’s work was funded in part by a Build IT
postdoctoral fellowship.

References
[1] J. Aldrich and C. Chambers. Ownership Domains: Separating

Aliasing Policy from Mechanism. In European Conference
on Object Oriented Programming (ECOOP), 2004.

[2] J. Aldrich, C. Chambers, and D. Notkin. ArchJava:
Connecting Software Architecture to Implementation. In
International Conference on Software Engineering (ICSE),
2002.

[3] J. Aldrich, V. Kostadinov, and C. Chambers. Alias An-
notations for Program Understanding. In Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA), 2002.

[4] A. Bach Nielsen and E. Ernst. Virtual Class Support at the
Virtual Vachine Level. In Workshop on Virtual Machines and
Intermediate Languages (VMIL), 2009.

[5] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A Type and Effect System for
Deterministic Parallel Java. In Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA),
2009.

[6] C. Boyapati, R. Lee, and M. Rinard. Safe Runtime Downcasts
With Ownership Types. In International Workshop on
Aliasing, Confinement and Ownership in object-oriented
programming (IWACO), 2001.

[7] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for
Safe Programming: Preventing Data Races and Deadlocks.
In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2002.

[8] C. Boyapati, B. Liskov, and L. Shrira. Ownership Types
for Object Encapsulation. In Principles of Programming
Languages (POPL), 2003.

[9] C. Boyapati, B. Liskov, L. Shrira, C.-H. Moh, and S. Rich-
man. Lazy Modular Upgrades in Persistent Object Stores.
In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2003.

[10] C. Boyapati, A. Salcianu, W. Beebee, Jr., and M. Rinard.
Ownership Types for Safe Region-based Memory Manage-
ment in Real-time Java. In Programming Language Design
and Implementation (PLDI), 2003.

[11] J. Boyland, J. Noble, and W. Retert. Capabilities for Sharing:
A Generalization of Uniqueness and Read-Only. In European
Conference on Object Oriented Programming (ECOOP),
2001.

[12] G. Bracha, P. Ahé, V. Bykov, Y. Kashai, W. Maddox, and
E. Miranda. Modules as Objects in Newspeak. In European
Conference on Object Oriented Programming (ECOOP),
2010.

[13] N. Cameron. Existential Types for Variance — Java
Wildcards and Ownership Types. PhD thesis, Imperial
College London, 2009.

[14] N. Cameron and S. Drossopoulou. Existential Quantifica-
tion for Variant Ownership. In European Symposium on
Programming Languages and Systems (ESOP), 2009.

[15] N. Cameron, T. Wrigstad, and J. Noble. Tribal Owner-
ship (accompanying technical report). Technical Report
10–14, School of Engineering and Computer Science, Victo-
ria University of Wellington. https://ecs.victoria.

ac.nz/twiki/pub/Main/TechnicalReportSeries/

ECSTR10-14.pdf.

[16] N. R. Cameron, S. Drossopoulou, J. Noble, and M. J. Smith.
Multiple Ownership. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2007.

[17] D. Clarke. Nested Classes, Nested Objects and Ownership.
Invited talk at FOOL/WOOD, 2006.

[18] D. Clarke and S. Drossopoulou. Ownership, Encapsulation,
and the Disjointness of Type and Effect. In Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA), 2002.

[19] D. Clarke, S. Drossopoulou, J. Noble, and T. Wrigstad.
Tribe: A Simple Virtual Class Calculus. In Aspect-Oriented
Software Development (AOSD), 2007.

[20] D. Clarke and T. Wrigstad. External Uniqueness is Unique
Enough. In European Conference on Object Oriented
Programming (ECOOP), 2003.

[21] D. Clarke, T. Wrigstad, J. Östlund, and E. B. Johnsen.
Minimal Ownership for Active Objects. In Asian Symposium
on Programming Languages and Systems (APLAS), 2008.

[22] D. G. Clarke, J. M. Potter, and J. Noble. Ownership Types for
Flexible Alias Protection. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 1998.

[23] D. Cunningham, W. Dietl, S. Drossopoulou, A. Francalanza,
P. Müller, and A. J. Summers. Universe Types for Topology
and Encapsulation. In Formal Methods for Components and
Objects (FMCO), 2008.

[24] D. Cunningham, S. Drossopoulou, and S. Eisenbach. Uni-
verse Types for Race Safety. In Verification and Analysis of
Multi-threaded Java-like Programs (VAMP), 2007.

[25] W. Dietl and P. Müller. Universes: Lightweight Ownership
for JML. Journal of Object Technology, 4(8), 2005.

[26] W. Dietl and P. Müller. Ownership Type Systems and
Dependent Classes. In Foundations of Object-Oriented
Languages (FOOL), 2008.

[27] W. M. Dietl. Universe Types: Topology, Encapsulation,
Genericity, and Tools. PhD thesis, ETH Zurich, Switzerland,
2009.

[28] E. Ernst. Propagating Class and Method Combination. In
European Conference on Object Oriented Programming
(ECOOP), 1999.

[29] E. Ernst. Family Polymorphism. In European Conference on
Object Oriented Programming (ECOOP), 2001.

[30] E. Ernst, K. Ostermann, and W. R. Cook. A Virtual Class
Calculus. In Principles of Programming Languages (POPL),
2006.

[31] C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating Objects
with Confined Types. ACM Transactions on Programming
Languages and Systems (TOPLAS), 29(6), 2007.

[32] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java:
a Minimal Core Calculus for Java and GJ. ACM Transactions
on Programming Languages and Systems (TOPLAS), 23(3),
2001.

[33] P. Jolly, S. Drossopoulou, C. Anderson, and K. Ostermann.
Simple Dependent Types: Concord. In ECOOP Workshop on
Formal Techniques for Java-like Languages (FTfJP), 2004.

[34] Y. D. Liu and S. Smith. Pedigree Types. In International
Workshop on Aliasing, Confinement and Ownership in object-
oriented programming (IWACO), 2008.

[35] Y. Lu and J. Potter. On Ownership and Accessibility. In
European Conference on Object Oriented Programming
(ECOOP), 2006.

[36] M. Odersky et al. An Overview of the Scala Programming
Language. Technical Report IC/2004/64, EPFL Lausanne,
Switzerland, 2004.

[37] O. L. Madsen and B. Moller-Pedersen. Virtual Classes: A
Powerful Mechanism in Object-oriented Programming. In
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 1989.

[38] M. Mezini and K. Ostermann. Conquering Aspects with
Caesar. In Aspect-Oriented Software Development (AOSD),
2003.

[39] P. Müller and A. Poetzsch-Heffter. Universes: A Type System
for Alias and Dependency Control. Technical Report 279,
Fernuniversität Hagen, 2001.

[40] J. Noble, J. Vitek, and J. Potter. Flexible Alias Protection.
In European Conference on Object Oriented Programming
(ECOOP), 1998.

[41] N. Nystrom, S. Chong, and A. C. Myers. Scalable Extensibil-
ity via Nested Inheritance. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2004.

[42] J. Östlund and T. Wrigstad. Welterweight Java. In
International Conference on Objects, Components, Models
and Patterns (TOOLS Europe), 2010.

[43] M. Parkinson. Class Invariants: The End of the Road?
In International Workshop on Aliasing, Confinement and
Ownership in object-oriented programming (IWACO), 2007.

[44] C. Saito, A. Igarashi, and M. Viroli. Lightweight Family
Polymorphism. J. Funct. Program., 18(3), 2008.

[45] M. Smith. A Model of Effects with an Application to
Ownership Types. PhD thesis, Imperial College, 2007.

[46] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. Stream-
Flex: High-throughput Stream Programming in Java. In
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2007.

[47] M. Torgersen. The Expression Problem Revisited. In
European Conference on Object Oriented Programming
(ECOOP), 2004.

[48] P. Wadler. The Expression Problem. Message to Java-
Genericity mailing list, November 1998.

[49] T. Wrigstad and D. Clarke. Existential Owners for Ownership
Types. Journal of Object Technology, 6(4), 2007.

[50] T. Wrigstad, F. Pizlo, F. Meawad, L. Zhao, and J. Vitek. Loci:
Simple Thread-Locality for Java. In European Conference
on Object Oriented Programming (ECOOP), 2009.

[51] T. Zhao, J. Baker, J. Hunt, J. Noble, and J. Vitek. Implicit
Ownership Types for Memory Management. Sci. Comput.
Program., 71(3), 2008.

