
Encoding Ownership Types in Java

Nicholas Cameron and James Noble

Victoria University of Wellington, New Zealand

Abstract. Ownership types systems organise the heap into a hierar-
chy which can be used to support encapsulation properties, effects, and
invariants. Ownership types have many applications including paralleli-
sation, concurrency, memory management, and security. In this paper,
we show that several flavours and extensions of ownership types can be
entirely encoded using the standard Java type system.
Ownership types systems usually require a sizable effort to implement
and the relation of ownership types to standard type systems is poorly
understood. Our encoding demonstrates the connection between owner-
ship types and parametric and existential types. We formalise our en-
coding using a model for Java’s type system, and prove that it is sound
and enforces an ownership hierarchy. Finally, we leverage our encoding to
produce lightweight compilers for Ownership Types and Universe Types
— each compiler took only one day to implement.

1 Introduction

Ownership types describe the topology of the heap in the program source code.
They come in several varieties (context-parametric [16], Universes [17], Owner-
ship Domains [3], OGJ [27], and more) and have many practical applications,
including preventing data races [6,18], parallelisation [15,5], real-time memory
management [4], and enforcing architectural constraints [2].

Ownership types usually require large, complicated type systems and compil-
ers, and their relation to standard type theory is not well understood. We give a
simple encoding from ownership types to standard generic Java by extending the
previously identified relationship between ownership types and parametric types
[26,27]. This previous work encoded ownership parameters as type parameters,
but treated the current object’s ownership context (the this or This context)
specially; we treat it as a standard type parameter, hidden externally by exis-
tential quantification [13]. With this technique we can encode ownership types
(with generics and existential quantification), Ownership Domains, and Generic
Universe Types. Furthermore, by unpacking the This parameter we can support
a range of extensions, including inner classes [7], dynamic aliases [15], fields as
contexts [12], and existential downcasting [31], within the same standard type
system.

Contributions and Organisation The contributions of this paper are: a thorough
discussion of how various flavours and extensions of ownership types can be

encoded in a standard type system, such as Java’s (Sect. 3), a formal type
system which captures these concepts (including variations and extensions) and
a soundness proof for this system which demonstrates that our encoding enforces
the ownership hierarchy (Sect. 4), and compilers for Generic Universe Types and
Ownership Types (Sect. 5).

Our work is of benefit to theoreticians and implementors: it provides an
element of the fundamental underpinnings of ownership types and a shorter path
to the implementation of languages with ownership types. We do not introduce
new features or make existing approaches more expressive. We do not envisage
that programmers would use a language like our encoding directly.

Additionally, we give background on Java generics and ownership types in
Sect. 2 and conclude and describe future work in Sect. 6.

2 Background

In this section, we describe ownership types and features of the Java type system
used in our encoding.

2.1 Java Generics and Wildcards

Java has featured parametric and existential types since version 5.0, in the form
of generics and wildcards [20]. Java types consist of a class name and a (possibly
empty) list of actual type parameters, for example, we can describe a list of books
as List<Book>, this requires a class (or interface) with formal type parameters,
e.g., class List<X> {...}. The formal type parameters (e.g., X) may be used
in the body of the class; outside the class body they must be instantiated with
actual parameters (e.g., Book).

Generic types must be invariant with respect to subtyping. However, it is
sometimes safe and desirable to make generic types co- or contravariant. To
support this, Java has wildcards [28]: an object of type List<? extends Book>
is a covariant list of books, that is, a list of some subtype of book. To remain
sound, covariant lists must be read-only and contravariant lists (indicated by
lower bounds, using the super keyword) write-only; wildcards enforce this. For-
mal models of Java typically use bounded existential types to represent wildcards
[11]: our covariant list is denoted ∃X→[⊥ Book].List<X> (we use [L U] to de-
note lower and upper bounds on type variables; ⊥, the bottom type, indicates
no lower bound).

A wildcard hides a type parameter; for example, we can store (due to subtyp-
ing) an object of type List<Book> in a variable of type List<?>: the wildcard
hides the witness type Book. Java does allow the type to be temporarily named,
but only as a fresh type variable, this is known as wildcard capture and corre-
sponds to unpacking an existential type1. For example, List<?> can be capture
converted to List<Z>, where Z is fresh; however, the type system does not know
of any relationship between Z and Book.
1 Subtyping of concrete types to wildcard types corresponds to packing.

2

2.2 Ownership Types

At their most abstract, ownership types [16] are a mechanism for organising the
heap into a hierarchy of contexts. The type system ensures that objects’ positions
in the hierarchy are reflected in their types. This soundness property allows
contexts to be used to specify encapsulation properties (for which ownership
types are famous), such as owners-as-dominators [16] and owners-as-modifiers
[17], or to specify effects [15] or invariants [24]. Several mechanisms for reflecting
the ownership hierarchy in types have been proposed; these can be separated into
parameter-based systems, where types are parameterised by contexts (such as
‘vanilla’ ownership types [16,15], multiple ownership [12], and ownership domains
[3]) and annotation-based systems, where types are annotated to describe relative
position in the hierarchy (such as Universes [17]).

There have been several syntactic (but semantically equivalent) variations
in the way ownership types are denoted, in our source language we prefix an
object’s type with its owner and parameterise it with actual context parameters.
A class is declared without an explicit owner (only context parameters) and the
owner keyword is added to the language for use as an actual context parameter
(similarly to the this keyword); for example:

class List<d> {
this:Node<d> first;

}
class Node<d> {

owner:Node<d> next;
d:Object datum;

}
Ownership types

Here, a list object owns all of its nodes and the context parameter d holds the
data in the list. We will use this list as a running example.

Encapsulation and Effects Most ownership systems consist of a descriptive part
(describing the topology of the heap) and a prescriptive part, which uses the
described topology to specify an encapsulation policy or effect system. Encap-
sulation properties can restrict aliasing (e.g., owners-as-dominators, associated
with vanilla ownership types [16]) or access (e.g., owners-as-modifiers, from Uni-
verses [17]). An effect system describes how objects are accessed, rather than
restricting access. In this paper we concentrate on the descriptive aspects of
ownership and so we will not describe these policies in detail.

Universes Universes [17] are an annotation-based ownership system. Types may
be annotated with rep (denoting that objects of this type are owned by this),
peer (objects are in the same context as this), or any (objects are in an unknown
context). Generic Universe Types [19] support both type parametricity and uni-
verse modifiers; the programmer can write types such as rep List<peer Book>,
which represents a list (owned by the current object) of books in the current con-
text. Universe types and ownership types describe the same hierarchies [9]. Uni-

3

verse types are simpler to write than ownership types, but less expressive. The
above list example is expressed using Universes below, the data in the list can
be described more precisely (as in ownership types) if we were to use generics.

class List {
rep Node first;

}
class Node {

peer Node next;
any Object datum;

}
Universe

2.3 OGJ

Ownership types and generics can be combined in an orthogonal fashion [19,10],
giving the benefits and flexibility of both systems. They can also be integrated,
as in Ownership Generics Java (OGJ [27]); the benefits of both systems are
still gained, but with only a single kind of parameter: type parameters are used
to represent context parameters. The only extra ingredient in OGJ (beyond
standard Java generics) is a This type parameter which represents not a type,
but the current context. This type parameter is treated specially by the formal
type rules.

Our list example can be written in OGJ:

class List<D, Owner> {
Node<D, This> first;

}
class Node<D, Owner> {

Node<D, Owner> next;
Object<D> datum;

}
OGJ

The syntax is almost identical to the standard ownership types version, other
than the owner of a type is specified as the last type parameter. The semantics,
however, are different: all parameters are treated as type parameters by the type
system, the usual rules for type checking Java are applied, rather than special
ownership types rules. The exception is in dealing with the This owner of first,
here, special rules must be applied.

Featherweight Generic Confinement (FGC [26]) uses the same representation
of contexts as type parameters, but without any support for the This context.
The result is encapsulation within static packages, but not within dynamically
allocated objects.

4

3 Encoding Ownership Types into Java

In this section we describe how we encode source ownership types programs
into Java. As in FGC [26] and OGJ [27], we represent the owner of a class
and its context parameters with type parameters. Actual context parameters
are encoded as actual type parameters. We create a formal type parameter to
represent the this context [13], bounded above by Owner. The inside relation
(context ordering) is encoded by subtyping (as in OGJ). Since this cannot
be named outside its class declaration, we must hide the corresponding This
type parameter in types, which is done using Java wildcards; conveniently, the
wildcard will inherit the bound declared on This. Our basic ownership types list
example (Sect. 2.2) is encoded as:

class List<D, Owner extends World, This extends Owner> {
Node<D, This, ?> first;

}
class Node<D, Owner extends World, This extends Owner> {

Node<D, Owner, ?> next;
Object<D, ?> datum;

}
Java

Actual context parameters are either World (which represents the root con-
text) or formal context variables (either quantified or with class scope). The
inherited or explicit bounds on these type variables produce a partial ordering
on type parameters corresponding to the ownership hierarchy2. Because there
are no concrete types representing contexts (other than World), the hierarchy is
an illusion: an omniscient type checker would know that all context-type vari-
ables ultimately hold World. The opacity of existential types ensures that the
illusory hierarchy is respected during type checking.

Type systems must treat existentially quantified variables as hiding unique
types; this gives the correct behaviour for ownership types in our encoding by
treating each This context as unique. If we did not always hide the This param-
eter, ownership typing would not be effective3:

List<World, World, X> l1 = new List<World, World, X>();
List<World, World, X> l2 = new List<World, World, X>();
l1.first = l2.first; //OK, but should be an error

Java

Universes Generic Universe Types can be encoded into ownership types [9],
and then into Java using the above scheme. The only obstacle is that the universe
modifier any corresponds to an existentially quantified owner (see below); any

2 There are effectively two subtype hierarchies: one of real objects with Object at its
root, and one of ownership contexts with World at its root.

3 In this section we will use wildcards in new expressions, this is not allowed in Java
and we describe how to avoid this in Sect. 5.

5

can be encoded as an unbounded wildcard. The translation of the Universes
basic list is given below. It is simpler than the ownership types version because
we do not need to encode the context parameter; note the owner of datum is a
wildcard, which encodes any.

class List<Owner extends World, This extends Owner> {
Node<This, ?> first;

}
class Node<Owner extends World, This extends Owner> {

Node<Owner, ?> next;
Object<?, ?> datum;

}
Java

The extension to Generic Universe Types is straightforward, type parameters
remain in the encoding, upper bounds are encoded in the same way as other
types.

Ownership Domains Ownership domains [3] support more flexible topologies
and a more flexible encapsulation property than ownership types. Topologically,
ownership domains allow for multiple contexts (called domains) per object; ob-
jects can belong to any of these contexts and all contexts are nested within the
object’s owner.

To support multiple contexts per object in our encoding we allow multiple
parameters in place of the single This parameter. All these parameters are given
the upper bound of Owner and all must be hidden with wildcards to create
the phantom ownership hierarchy. Types are encoded in the same way as for
ownership types.

For example, the following class with two domains and a single domain pa-
rameter,

class C<domP> { domain dom1, dom2; }
ODs

it is encoded as the Java class,

class C<DomP, Owner, Dom1 extends Owner, Dom2 extends Owner> {}
Java

3.1 Extensions to Ownership Types

There has been much work on making ownership types systems more descriptive
and more flexible. Generally the underlying ownership hierarchy is unchanged,
but it can be described more precisely in the source code, usually combined with
a relaxation of encapsulation properties in certain circumstances. In this section
we describe several extensions to ownership types and how they can be encoded.

6

Bounds Context parameters may be given upper and lower bounds [15,10]
with respect to the ownership hierarchy. These are usually denoted inside and
outside, respectively. For example, class C<a outside owner, b inside a>.

Upper bounds on context parameters can easily be replicated using upper
bounds on the corresponding type parameters (e.g. B extends A). The encoded
bounds are with respect to the subtype hierarchy, within which the ownership
hierarchy is encoded. Lower bounds cannot be encoded in Java without changing
the type system to support lower bounds on type parameters.

Context Parametric Methods Methods may be parameterised by contexts
[14,30] in an ownership system in the same way as they can be parameterised
by types in Java. This allows for better code reuse. For example:

<a,b> a:Node next(a:Node n) {
return n.next;

}
Ownership types

This method will work for all possible nodes; without context-parametric
methods, such a method could not be written.

Context parametric methods are easily encoded as type parametric Java
methods, upper bounds on context parameters can be handled as above:

<A,B> Node<B, A, ?> next(Node<B, A, ?> n) {
return n.next;

}
Java

Inner Classes Ownership types systems can be made more flexible by giving
inner classes access to the this and owner parameters of the surrounding class
[7]. This increases the descriptiveness of the type system because more contexts
can be named inside an inner class. Owners-as-dominators can be relaxed to al-
low instantiations of inner classes to hold references to their surrounding objects
(e.g., curNode field in the following example). This allows iterators to be imple-
mented in an owners-as-dominators system, an early obstacle to acceptance of
ownership types systems. We extend our list example:

7

class List<d> {
...
class Iterator {

List.this:Node<d> curNode;
d:Object next() {

d:Object val = curNode.datum;
curNode = curNode.next();
return val;

}
}

}

class Client {
void m(this:List<world> l) {

this:Iterator i = l.new this:Iterator()
world:Object first = i.next();

}
}

Ownership types

Inner classes must be able to name the context of their surrounding class;
this happens naturally in Java, an inner class can name type parameters of
its surrounding class. We must be careful to avoid hiding the generated type
parameter by adding This parameters for both inner and outer classes. This is
easily accomplished by prepending the name of the class to the names of the
Owner and This parameters (we elide some bounds):

class List<D, Owner, This extends Owner> {
...
class Iterator<It_Owner, It_This extends It_Owner> {

Node<D, This, ?> curNode;
Object<D, ?> next() {

Object<D, ?> val = curNode.datum;
curNode = curNode.next();
return val;

}
}

}

class Client<Owner, This extends Owner> {
void m(List<World, This, ?> l) {

Iterator<This, ?> i = l.new Iterator<This, ?>();
Object<World, ?> first = i.next();

}
}

Java

8

Dynamic Aliases An alternative solution to the iterators problem under owners-
as-dominators is to allow dynamic aliases [15], that is allow variables on the
stack to reference objects which break owners-as-dominators, and only enforce
owners-as-dominators on the heap. Dynamic aliases achieve this by allowing local
variables to be used as contexts. Extending the original list example:

class Iterator<d> {
owner:Node<d> curNode;
d:Object next() {

d:Object val = curNode.datum;
curNode = curNode.next();
return val;

}
}

class Client {
void m(final this:List<world> l) {

l:Iterator<world> i = new l:Iterator<world>();
world:Object first = i.next();

}
}

Ownership types

The variable l cannot be named outside of m, and so the dynamic alias to i
(owned by l) cannot be stored in the heap. It is only sound to use final variables
to name contexts.

An object’s context is represented by its hidden This argument; therefore,
encoding dynamic aliases in Java requires naming that argument using a fresh,
temporary type variable which is introduced as an extra type parameter to a
method. Unpacking the hidden This argument to the named variable is achieved
by wildcard capture:

9

class Iterator<D, Owner extends World, This extends Owner> {
Node<D, Owner, ?> curNode;
Object<D, ?> next() {

Object<D, ?> val = curNode.datum;
curNode = curNode.next();
return val;

}
}

class Client<Owner extends World, This extends Owner> {
void m(List<World, This, ?> l) {

this.mAux(l)
}

<L> void mAux(List<World, This, L> l) {
Iterator<World, L, ?> i = new Iterator<World, L, ?>;
Object<World, ?> first = i.next();

}
}

Java

The wildcard which hides l’s This argument is capture converted to the fresh
type variable L when mAux is called. Using l as an owner in the source program
is encoded to using L as an owner. L can only be named within the scope of
mAux, and this corresponds to the scope of l.

Our example is simple because it does not require other state to be passed
to mAux. In a more realistic example we would need to pass any data accessed
in m to mAux, and back again if it is not passed by reference. A simpler encoding
is to modify the original method so that the This argument of l is captured
by calling m (rather than when mAux). The simpler encoding only works if the
variable being used as a context is an argument rather than a local variable.
Note that the call-sites of m do not have to be modified, despite the extra type
parameter, due to Java’s type parameter inference:

class Client<Owner, This> {
<L> void m(List<World, This, L> l) { ... } //body as mAux

}
Java

Fields as Contexts Similarly to local variables, final fields can be used to name
contexts [12], this again improves flexibility. We can extend the list example:

class List<d> {
final this:Node<d> first;
first:Object f2; //owned by a field

}
Ownership types

10

Paths of final fields may also be used as contexts [12], e.g., one could allow
the type f3.first:Object, where f3 is a final field of type List.

We encode fields used as contexts by adding their hidden This parameters
to the class’s parameter list:

class List<D, Owner extends World, This extends Owner,
First extends This> {

final Node<D, This, ? extends First> first;
Object<First, ?> f2;

}
Java

Instantiating this class requires that the value of first is passed into the
constructor, wildcard capture is used to name First and then both this and
First are hidden by wildcards.

Existential Quantification Just as type variables may be quantified existen-
tially, so may context variables [10]. This gives existential ownership types such
as ∃o.o:Object or ∃o.this:List<o>. Such quantification has two benefits: con-
text variance, that is subtyping which is variant with respect to the ownership
hierarchy, and expressing partial knowledge about contexts (e.g., an unknown
context or some unknown context within another known context). Existential
quantification is the mechanism which underlies a number of proposals involving
some kind of variance annotations on contexts [23,8].

Existentially quantified contexts can be encoded as wildcards. Since wildcards
are syntactic sugar for existential types, this is not surprising. Both upper and
lower bounds can be straightforwardly encoded. The only difficulty is if quan-
tified contexts have both upper and lower bounds, which is not supported by
Java wildcards. This should not be a problem, however, because quantification
is usually provided by variance annotations or wildcard-like syntax.

Existential Downcasting Downcasting is a common feature in programs, es-
pecially those that do not use generics. When downcasting from type A to type
B, if B has context parameters which A does not, these must be synthesised.
Wrigstad and Clarke propose the use of “existential owners” to handle these
introduced context parameters [31]. For example:

void m(this:Object x) {
this:List<d> l = (this:List<d>) x;
d:Object first = l.first.datum;
l.first.datum = new d:Object();

}
Ownership types

Here x is cast from type this:Object to this:List<d>, the d context is a
fresh context (an “existential owner”) that can be named in the scope of the
method and allows operations on l to take place. Objects owned by d cannot
be stored in the heap, outside of the original data structure, since d can only be

11

named locally. Note that there is no explicit quantification, although “existential
owners” correspond to unpacked context-existential types [8].

We can cast x to a type where D is hidden by a wildcard, although we cannot
cast directly to a type containing D because D is not in scope. We must split the
method in order to name D using capture conversion:

void m(Object<This, ?> x) {
this.mAux((List<?, This, ?>) x);

}
<D> void mAux(List<D, This, ?> l) {

Object<D, ?> first = l.first.datum;
l.first.datum = new Object<D, ?>();

}
Java

Owners-as-Dominators The owners-as-dominators property specifies that all
reference paths from the root of the ownership hierarchy to any object pass
through that object’s owner: owners dominate reference paths. The property is
enforced by restricting which contexts can be named: if only contexts outside
the current context can be named, then no references can exist into contexts
other than the one owned by the current this object.

We have previously sketched how owners-as-dominators can be supported in
an encoding of ownership into Java [13]. This approach can be duplicated here
with the same drawback: owners-as-dominators can only be guaranteed if the
Java compiler is modified, it cannot be supported as a pre-processor step like
the rest of the encodings discussed. The modifications are not major: a small
change to the well-formedness rules for classes and types to ensure that context
parameters are outside the declared owner (the usual requirement for ownership
types to support owners-as-dominators). The issue is that at intermediate steps
of computation the compiler might allow the This parameter to be named in
types: this is not a problem for descriptive ownership because it is only tempo-
rary, but it can allow owners-as-dominators to be violated.

4 Formalisation

To be sure that our encoding of ownership types in Java is sound, we have
formalised it in Java’s type system. This formalisation (Tame FJOwn) follows the
approach of OGJ [27], in representing context parameters as type parameters,
but, by supporting existential types, we do not need any special machinery to
deal with ownership issues.

The bulk of the formal system is relatively standard or follows Tame FJ
[11]. Differences from Tame FJ to support ownership are highlighted in grey .
Tame FJOwn extends Tame FJ, but we are still modelling the Java type system
without extension: the additions to Tame FJ are either a convenience (syntactic
separation of context and type parameters), or used only for proving soundness
(locations as run-time owners and ? in object creation).

12

We also add field assignment and null and a heap and casting (to model dy-
namic downcasts), and make some small improvements elsewhere; these changes
are not highlighted. For the sake of brevity, we do not describe the parts un-
changed from Tame FJ. Parts of the operational semantics, well-formed envi-
ronments and heaps, auxiliary functions, and rules for using the heap as an
environment are available in an accompanying technical report [1].

e ::= γ | null | e.f | e.f = e | e.<P, P >m(e) expressions

| new C< T ,? > | (T)e

v ::= ι | null values

Q ::= class C<X¢ T, O¢ τ,Owner¢ τ, This¢ τ > ¢ N {T f; M}
M ::= <X¢ T, O¢ T > T m(T x) {return e;} method declarations

N ::= C<T, τ > | Object< τ, τ > class types

R ::= N | X non-existential types

T , U ::= ∃∆.N | ∃∅.X | types

P ::= T | ? |method type parameters

X ,Y ::= X | O | v type parameters

∆ ::= X→[Bl Bu]type environments
B ::= T | ⊥ bounds

Γ ::= γ:T variable environments
γ ::= ι | x locations or variables

H ::= ι →{N; f→v} heaps

T ::= T | τ types and contexts

P ::= T | ? method parameters

τ ::= World<> | O | v contexts

x, this variables
X, Y type variables

O, Owner, This context variables

ι locations

C, Object, World class names
f, g field names
m method names

Fig. 1. Syntax of Tame FJOwn.

Syntax The syntax of Tame FJOwn is given in Fig. 1. For convenience, and fol-
lowing OGJ [27], we syntactically separate types and type parameters used to
represent contexts from regular types: we use τ to denote types which represent
contexts, T to denote regular types, and T to denote either type; likewise for
parameters, we use O to denote type parameters which represent context pa-
rameters, X for regular type parameters, and X for either kind. Importantly, the
two kinds of type are treated almost identically by the type system. We could
do without this convenience by examining the type’s top supertype: contexts
will be bounded by World, other types by Object. Type parameters for method
invocations must be fully specified. We use ? to indicate that the type parameter

13

should inferred; this allows us to model wildcard capture. We also use ? in object
creation.

We allow values (v, that is addresses, and null, which corresponds to World)
to be context (and thus type) parameters (only at runtime) in order to prove a
stronger soundness property (see Sect. 4.1). Values are not allowed as parameters
in source code.

We use a few shorthands for types: C for C<>, and R for ∃∅.R.

Well-formed types: ∆ ` B ok, ∆ ` P ok, ∆ ` R ok

X ∈ ∆

∆ ` X ok

(F-Var)

∆ ` World<> ok

(F-World)

∆ `⊥ ok

(F-Bottom)

∆ ` ? ok

(F-Star)

∆ ` ∆′ ok
∆, ∆′ ` N ok

∆ ` ∃∆′.N ok

(F-Exists)

∆ ` T , τ , τo ok

T = T , τ , τo, τt ∆(τt) = [⊥ T]
class C<X¢ T u> ¢ N{...}

∆ ` T <: [T /X]T u

∆ ` C<T > ok

(F-Class)

∆ ` τo ok

∆(τt) = [⊥ T]
∆ ` Object< τo,τ t > ok

(F-Object)

Fig. 2. Tame FJOwn well-formed types, type environments, and heaps.

Well-formed Types Well-formed types are defined in Fig. 2. In F-Class and
F-Object, we do not check that the type parameter in the This position is
well-formed. Instead we check that it is in the environment and is bounded
below by bottom. This ensures that it is always an in-scope variable (in fact it
is usually a quantified variable, although this does not need to be enforced) and
that no other type can be derived to be a subtype of it (as would be the case if
it had a lower bound). This ensures that the This context cannot be named by
using subsumption.

Type Checking Selected type rules are given in Fig. 3. So that fields owned by
This can be initialised, object creation (T-New) does not take any (value) pa-
rameters (i.e., we don’t have constructors, at runtime all fields are initialised to
null). This requires null and the T-Null rule. The actual type parameter in
the This position of new expressions must always be ?, so no actual parame-
ter is named at initialisation. New objects are given existential types with the
This existentially quantified (bounded above by the Owner parameter), which
ensures that the actual This parameter can never be named directly. The ex-
tra well-formedness premise in T-New is stricter than the usual well-formedness

14

Expression typing: ∆; Γ ` e : T

∆ ` T ok

∆; Γ ` null : T

(T-Null)

∆; Γ ` e : ∃∆′.N fType(f, N) = T ′

∆; Γ ` e′ : T ∆, ∆′ ` T <: T ′

∆; Γ ` e.f = e′ : T

(T-Assign)

∆ ` T , T ok

∆ ` ∃O→ [⊥ T].C<T ,T ,O> ok

∆; Γ ` new C<T ,T ,? > : ∃O→ [⊥ T].C<T ,T ,O>
(T-New)

Class typing: ` Q ok

∆ = X→[⊥ T u], Owner→[⊥ τo],This→[⊥ Owner],O→[⊥ τu]

∅ ` ∆ ok ∆ ` N, T ok

X = X, O, Owner, This ∆; this:C<X> ` M ok in C

N = D<T ,Owner,This> ∆ ` N <: Object<Owner,This>

` class C<X¢ T u, O¢ τu,Owner¢ τo,This¢ Owner > ¢ N{T f; M} ok

(T-Class)

Fig. 3. Selected Tame FJOwn expression and class typing rules.

premise and ensures that the type parameters are well-formed without the extra,
quantified parameter in the environment.

We add a standard rule for casting (T-Cast). Unlike in Featherweight Java,
we do not distinguish between up-, down-, and stupid casts: we only support
downcasts. Although casting is safe in our formal system (because type parame-
ters are preserved at runtime), our implementation is in Java which uses erasure
semantics, therefore casting is strictly unsound (as in Java).

In T-Class we enforce that the declared upper bound of This is Owner. The
last two premises ensure that declared classes fall under the ‘Object hierarchy’
and are not subtypes of World, which means they cannot be used as context
parameters, and that the Owner and This parameters are invariant with respect
to inheritance. The latter is an important sanity condition of our encoding of
ownership and corresponds to the well-known condition of inheritance and own-
ership [15]. We assume that Object is declared with parameters Owner and This
with the usual bounds.

Operational Semantics The most interesting change from Tame FJ is in object
creation:

ι 6∈ dom(H) fields(C) = f
H′ = H, ι → {C<T ,T ,ι>; f→null}

new C<T ,T ,? >;H ; ι;H′
(R-New)

15

A new object’s runtime type (stored in the heap) is formed by replacing the ?
used in the program source by the new object’s address. Together with the usual
rules of substitution (in method invocation), occurances of both this and This
in class declarations are replaced by the instantiation’s address, unifying the
two representations of the object. Together with the quantification in T-New,
objects are, in effect, packed into existential types, with the object’s address as
witness ‘type’. Other operational semantics rules are given in the accompanying
technical report [1].

4.1 Discussion

Ownership types are intrinsically dependent because they reflect objects’ po-
sitions in the heap. We have shown that ownership types can be encoded as
parametric types in a Java-like type system, reminiscent of phantom types [21].
Phantom types are parametric types where the type parameters are not used
as types4. Phantom types are used in Haskell to simulate values in types, with-
out the complexity and decidability issues of full dependent types [21]. This is
exactly what our system is doing with respect to ownership information. We con-
clude then, that ownership types systems are, in some sense, no more complex
than standard parametric type systems such as Java’s. Despite their dependent
character, the full power of dependent types is not required to support own-
ership types systems. We should not overstep the mark, however, and assume
that type parametricity is the only, or even the best, foundational model for
ownership types.

Most of the ownership features described in Sect. 3 can be accommodated in
Tame FJOwn. Inner classes require encoding and are discussed below. Paths of fi-
nal fields cannot easily be encoded in our formal system. Generic Universe Types
[19] can be accommodated after encoding. Ownership domains would require a
small extension to the formal system, which we have avoided for the sake of
simplicity: each class has a list of This type parameters rather than a single pa-
rameter. Each parameter represents a domain. Since this change merely changes
This to This, we expect very few changes to be necessary to accommodate it.

The extensions to support ownership domains and inner classes (below) are
fairly superficial changes, modifying only the restrictions on type parameters
and which type parameters are hidden in T-New.

Inner Classes Supporting inner classes would require an extension to Tame
FJOwn. References to the surrounding object and the type parameters of the sur-
rounding object must be made available to objects of the inner class. Extending
Tame FJOwn could be done by adopting a nesting of classes and objects in the
class table and heap or by adding a field to each class pointing to the surrounding
object and type parameters for the surrounding classes’ type parameters; object
creation becomes more complex, but otherwise the calculus is not changed too
4 More precisely, phantom type parameters are not used on the right hand side of the

definition of a type constructor.

16

much. Classes are essentially encoded, the iterator as inner class example from
Sect. 3.1 is encoded as (we elide bounds):

class Iterator<D, L_Owner, L_This, It_Owner, It_This> {
List<D, L_Owner, L_This> out;
Node<D, L_This, ?> curNode;
Object<It_This, ?> privField;

Object<D, ?> next() {...}
}

class Client<Owner, This> {
<LT> void m(List<World, This, LT> l) {

Iterator<World, This, LT, This, ?> i
= new Iterator<World, This, LT, This, ?>();

i.out = l;
Object<World, ?> first = i.next();

}
}

Java

We must use (a presumably capture converted) type variable (LT) for the
This parameter of l, provide l’s type parameters to i, and must instantiate the
out field of i.

Type Soundness We have proved type soundness for Tame FJOwn in the usual
way [29] by proving progress and preservation theorems. For the most part, our
proofs follow those of Tame FJ [11]; they can be downloaded from [1].

In standard existential type systems, witness types are known at runtime,
and type soundness guarantees that no type errors involving witness types oc-
cur, even though the type system has only partial knowledge of these types
during type checking. Taking this approach with Tame FJOwn would not be
very informative, since all witness types (according to T-New) will be ?. Our
static types hold more information (the ownership hierarchy) than is represented
by the ‘witness types’. Our soundness result proves that Tame FJOwn does en-
force the ownership hierarchy, i.e., Tame FJOwn enforces not only strict type
soundness (well-typed programs won’t access non-existent fields or methods),
but also that objects reside in the context desribed by their type. Ownership in-
formation is represented at runtime by storing the object’s address into its This
position (in R-New): the address propagates into other ownership positions by
substitution (in R-Invk).

In proving type soundness for Tame FJOwn, we have proved that a one-
stage type checker (corresponding to an integration of our pre-processor and the
Java type checker) is sound, rather than proving that a two-stage type checker
(corresponding to pre-processing and then Java type checking, as in our imple-
mentation) is sound. Our approach is theoretically more direct and reflects what
we envision to be the long term use of our techniques.

17

5 Implementation

We have implemented compilers for Java with ownership types and Generic
Universe Types by using the techniques described in this paper. Our implemen-
tations are simple source to source translators which translate source code to
plain Java; the Java compiler is then used to type check and compile the code.
Most type errors are caught by the Java compiler, only a few are handled by
our translators. Our translators are extensions to the parser and AST elements
of the JKit Java compiler [25]. We encode one class at a time and do not need
to be aware of the whole program. Generated classes will behave well together,
but will be incompatible with plain Java classes5.

Our approach supports ownership and universe types on top of nearly the
entire Java Language, including generics, arrays (including the various kinds of
array initialisers; we only support ownership information on the elements in an
array, the array itself (like primitive types) is not considered to have an owner),
interfaces, inner classes (but not anonymous classes), statics, and wildcards.

Our implementations are very much prototypes, an industrial strength com-
piler would integrate the encoding with Java type checking, as opposed to our
two-stage process. Integration would allow for meaningful error messages and
support for effects and encapsulation properties. Furthermore, to be usable, a
language requires more than a compiler, libraries must be supported, either by
support for non-ownership aware classes (currently, all classes must be written
with ownership types) or by producing a set of ownership annotated libraries (or
a combination of the two approaches). Our compilers can be downloaded [1].

5.1 Ownership Types

Our source syntax is mostly similar to that used throughout this paper. We
support owners, context parameters, orthogonal generics, context- and type-
parametric methods, final method parameters as contexts (for dynamic aliases),
existential quantification in the form of context wildcards, and inner classes with
access to the contexts and context parameters of the surrounding object. We do
not support local variables (other than method parameters) or fields as contexts.
We support standard casting, including to wildcard owners, but do not directly
support “existential owners”. Since Java implements generics using erasure [22],
the runtime checks on casts do not ensure correctness of ownership parameters;
with respect to ownership types, casting merely ensures that a program can type
check at compile time. This is not a problem in our formalism, because we do
not erase type parameters in the operational semantics.

The obvious function of our compiler is to strip owners and context param-
eters and replace them with type parameters, this is done both in class declara-
tions and in types; in the latter case, using wildcards in the This position.
5 Strictly, since we generate plain Java, one could write classes which behave well with

the generated classes, but not in a way which behaves nicely with the source classes.

18

Java does not allow wildcard parameters when objects are instantiated: to
get around this we use the Owner type parameter in the This position (because it
is the only type parameter which satisfies the declared bound) and immediately
cast to the required wildcard type (which inherits the upper bound),

new world:Object() //source syntax
new Object<World, ?>() //pseudo-Java
(OwnedObject<World, ?>) new OwnedObject<World, World>() //Java

Note also that, as in OGJ, we have to add an OwnedObject which extends
Object at the root of our class hierarchy to take the encoded ownership param-
eters. All classes must extend this class (rather than Object, which may happen
implicitly) and all uses of Object changed to OwnedObject. In the source syn-
tax, the object’s owner is implicit in the extends clause, and so translation of the
superclass type must be treated differently from other types. Because we add
OwnedObject and World to our runtime, we must import these classes into each
encoded class file.

5.2 Generic Universe Types

The source syntax is pretty standard for generic universes, e.g., rep List<any
Object>. The translation is much simpler than for ownership types since we do
not have to translate context parameters, only types. Most of the issues faced
are similar, and simpler, than in the ownership types case: we must check for
universe modifiers on all types (but not in extends clauses, because ownership is
invariant with respect to inheritance, that is superclasses must be peers), Object
is translated to OwnedObject, and care must be taken with array types. As with
our ownership types implementation and Java, casting is unsafe and allows for
Universe modifiers to be changed improperly; Universes usually requires safe
down-casting.

6 Conclusion and Future Work

In this paper we have shown how ownership types, Generic Universe Types,
Ownership Domains, and a range of extensions to ownership types systems can
be encoded using Java Generics and wildcards. The key concepts are the repre-
sentation of context parameters as type parameters, the reification of this as a
type parameter, the hiding of this using wildcards, and the phantom ownership
hierarchy thus created. Our developments shed light on the type-theoretic foun-
dations of ownership types and offer a route for practical compilers constructed
upon existing technology.

Future Work The main thrust of future work will be in supporting owners-
as-dominators, and other encapsulation polices and effects, in our formal work
and compilers. This would require integrating our translating compiler with an

19

existing Java compiler, which would also allow for better error messages and more
efficient type checking. We would also like to encode libraries with ownership
type information for use with our compilers. An alternative would be to develop
our encoding so that encoded classes and the un-annotated Java libraries can
interact together.

References

1. Accompanying webpage. https://ecs.victoria.ac.nz/Main/Encoding.
2. Marwan Abi-Antoun and Jonathan Aldrich. Ownership Domains in the Real

World. In International Workshop on Aliasing, Confinement and Ownership in
object-oriented programming (IWACO), 2008.

3. Jonathan Aldrich and Craig Chambers. Ownership Domains: Separating Aliasing
Policy from Mechanism. In European Conference on Object Oriented Programming
(ECOOP), 2004.

4. Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack, David Holmes,
Filip Pizlo, Edward Pla, Marek Prochazka, and Jan Vitek. A Real-Time Java Vir-
tual Machine with Applications in Avionics. Transactions on Embedded Computing
Systems, 7(1):1–49, 2007.

5. Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen
Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung,
and Mohsen Vakilian. A Type and Effect System for Deterministic Parallel Java. In
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
2009.

6. Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. Ownership Types
for Safe Programming: Preventing Data Races and Deadlocks. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2002.

7. Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership Types for
Object Encapsulation. In Principles of Programming Languages (POPL), 2003.

8. Nicholas Cameron. Existential Types for Variance — Java Wildcards and Owner-
ship Types. PhD thesis, Imperial College London, 2009.

9. Nicholas Cameron and Werner Dietl. Comparing Universes and Existential Own-
ership Types. In International Workshop on Aliasing, Confinement and Ownership
in object-oriented programming (IWACO), 2009.

10. Nicholas Cameron and Sophia Drossopoulou. Existential Quantification for Variant
Ownership. In European Symposium on Programming Languages and Systems
(ESOP), 2009.

11. Nicholas Cameron, Sophia Drossopoulou, and Erik Ernst. A Model for Java with
Wildcards. In European Conference on Object Oriented Programming (ECOOP),
2008.

12. Nicholas Cameron, Sophia Drossopoulou, James Noble, and Matthew Smith. Mul-
tiple Ownership. In Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA), 2007.

13. Nicholas Cameron and James Noble. OGJ Gone Wild. In International Work-
shop on Aliasing, Confinement and Ownership in object-oriented programming
(IWACO), 2009.

14. David G. Clarke. Object Ownership and Containment. PhD thesis, School of
Computer Science and Engineering, The University of New South Wales, Sydney,
Australia, 2001.

20

15. David G. Clarke and Sophia Drossopoulou. Ownership, Encapsulation and the
Disjointness of Type and Effect. In Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), 2002.

16. David G. Clarke, John M. Potter, and James Noble. Ownership Types for Flex-
ible Alias Protection. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 1998.

17. David Cunningham, Werner Dietl, Sophia Drossopoulou, Adrian Francalanza, Pe-
ter Müller, and Alexander J. Summers. Universe Types for Topology and Encap-
sulation. In Formal Methods for Components and Objects (FMCO), 2008.

18. David Cunningham, Sophia Drossopoulou, and Susan Eisenbach. Universe Types
for Race Safety. In Verification and Analysis of Multi-threaded Java-like Programs
(VAMP), 2007.

19. Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic Universe Types.
In European Conference on Object Oriented Programming (ECOOP), 2007.

20. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification Third Edition. Addison-Wesley, Boston, Mass., 2005.

21. Ralf Hinze. The Fun of Programming, pages 245–262. Palgrave Macmillan, 2003.
Fun with phantom types.

22. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
a Minimal Core Calculus For Java and GJ. ACM Trans. Program. Lang. Syst.,
23(3):396–450, 2001. An earlier version of this work appeared at OOPSLA’99.

23. Yi Lu and John Potter. On Ownership and Accessibility. In European Conference
on Object Oriented Programming (ECOOP), 2006.

24. Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular Invariants
for Layered Object Structures. Science of Computer Programming, 62(3):253–286,
October 2006.

25. David Pearce. Jkit compiler. http://www.ecs.vuw.ac.nz/˜djp/jkit.
26. Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Featherweight

Generic Confinement. J. Funct. Program., 16(6):793–811, 2006.
27. Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Generic Owner-

ship for Generic Java. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2006.

28. Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter von der Ahé, Gilad
Bracha, and Neal Gafter. Adding Wildcards to the Java Programming Language.
Journal of Object Technology, 3(11):97–116, 2004. Special issue: OOPS track at
SAC 2004, Nicosia/Cyprus.

29. Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type Sound-
ness. Information and Computation, 115(1):38–94, 1994.

30. Tobias Wrigstad. Ownership-Based Alias Managemant. PhD thesis, KTH, Sweden,
2006.

31. Tobias Wrigstad and David G. Clarke. Existential Owners for Ownership Types.
Journal of Object Technology, 6(4), 2007.

21

